1
|
Rodriguez-Aponte SA, Naranjo CA, Johnston RS, Dalvie NC, Crowell LE, Bajoria S, Kumru OS, Joshi SB, Volkin DB, Love JC. Minimal purification method enables developability assessment of recombinant proteins. Biotechnol Bioeng 2024; 121:2423-2434. [PMID: 36929469 DOI: 10.1002/bit.28385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.
Collapse
Affiliation(s)
- Sergio A Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Neil C Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura E Crowell
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - J Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
3
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
4
|
Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: a review. Mol Biol Rep 2022; 49:10593-10608. [PMID: 35674877 PMCID: PMC9175168 DOI: 10.1007/s11033-022-07651-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1 Jalan Menara Gading, UCSI Heights, Taman Connaught, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Fazlina Nordin
- Tissue Engineering Centre (TEC), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000, Kuala Lumpur, Cheras, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia.
| |
Collapse
|
5
|
Li Q, Humphries F, Girardin RC, Wallace A, Ejemel M, Amcheslavsky A, McMahon CT, Schiller ZA, Ma Z, Cruz J, Dupuis AP, Payne AF, Maryam A, Yilmaz NK, McDonough KA, Pierce BG, Schiffer CA, Kruse AC, Klempner MS, Cavacini LA, Fitzgerald KA, Wang Y. Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Front Immunol 2022; 13:995412. [PMID: 36172366 PMCID: PMC9512078 DOI: 10.3389/fimmu.2022.995412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.
Collapse
Affiliation(s)
- Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Roxie C. Girardin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Wallace
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Monir Ejemel
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Alla Amcheslavsky
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Conor T. McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Zachary A. Schiller
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Zepei Ma
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alan P. Dupuis
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Anne F. Payne
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Mark S. Klempner
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| |
Collapse
|
6
|
Dalvie NC, Naranjo CA, Rodriguez-Aponte SA, Johnston RS, Christopher Love J. Steric accessibility of the N-terminus improves the titer and quality of recombinant proteins secreted from Komagataella phaffii. Microb Cell Fact 2022; 21:180. [PMID: 36064410 PMCID: PMC9444097 DOI: 10.1186/s12934-022-01905-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Komagataella phaffii is a commonly used alternative host for manufacturing therapeutic proteins, in part because of its ability to secrete recombinant proteins into the extracellular space. Incorrect processing of secreted proteins by cells can, however, cause non-functional product-related variants, which are expensive to remove in purification and lower overall process yields. The secretion signal peptide, attached to the N-terminus of the recombinant protein, is a major determinant of the quality of the protein sequence and yield. In K. phaffii, the signal peptide from the Saccharomyces cerevisiae alpha mating factor often yields the highest secreted titer of recombinant proteins, but the quality of secreted protein can vary highly. RESULTS We determined that an aggregated product-related variant of the SARS-CoV-2 receptor binding domain is caused by N-terminal extension from incomplete cleavage of the signal peptide. We eliminated this variant and improved secreted protein titer up to 76% by extension of the N-terminus with a short, functional peptide moiety or with the EAEA residues from the native signal peptide. We then applied this strategy to three other recombinant subunit vaccine antigens and observed consistent elimination of the same aggregated product-related variant. Finally, we demonstrated that this benefit in quality and secreted titer can be achieved with addition of a single amino acid to the N-terminus of the recombinant protein. CONCLUSIONS Our observations suggest that steric hindrance of proteases in the Golgi that cleave the signal peptide can cause unwanted N-terminal extension and related product variants. We demonstrated that this phenomenon occurs for multiple recombinant proteins, and can be addressed by minimal modification of the N-terminus to improve steric accessibility. This strategy may enable consistent secretion of a broad range of recombinant proteins with the highly productive alpha mating factor secretion signal peptide.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Yeast-Mycelial Dimorphism in Pichia pastoris SMD1168 Is Triggered by Nutritional and Environmental Factors. Curr Microbiol 2022; 79:190. [PMID: 35556178 DOI: 10.1007/s00284-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
This study reports, for the first time, morphological transition from yeast-like to filamentous form, normally associated with pathogenicity/increased protein secretion, in Pichia pastoris SMD1168 strain. The response was recorded in response to nutritional and environmental cues. The factors affecting this switch were extracellular pH (under nitrogen starvation conditions), carbon and nitrogen source under nitrogen- and carbon-limiting conditions respectively. Under nitrogen-limiting conditions, addition of fructose and sucrose in the culture medium induced filamentous morphology in a segregated form whereas addition of galactose led to a mixture of yeast and the filamentous form of the cells. Under carbon-limiting conditions, isoleucine and proline forced a filamentous form whereas glycine, valine, alanine and phenylalanine promoted yeast-like morphology. Similar dimorphic shift was also displayed by a recombinant methanol slow utilizing (Muts) strain (SMD-GCSF Muts) producing human granulocyte colony-stimulating factor in response to change in the initial inoculum level. Analysis of the extracellular metabolome by GC-MS indicated that several amino acids (leucine, proline, tyrosine), carboxylic acids (phenylacetic-, propanoic acid), alcohols and butylamine were present at different levels in the culture broth of the two morphological forms. High accumulation of proline and butylamine was seen in the extracellular culture filtrate of the filamentous form of the yeast. Presence of quorum-sensing molecules (phenylethyl alcohol, dodecanol) suggested complex network of pathways involved in this morphological transition.
Collapse
|
8
|
Liao X, Li L, Jameel A, Xing XH, Zhang C. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:9211-9218. [PMID: 34773154 DOI: 10.1007/s00253-021-11688-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Pichia pastoris has gained much attention as a popular microbial cell factory for the production of recombinant proteins and high-value chemicals from laboratory to industrial scale. However, the lack of convenient and efficient genome engineering tools has impeded further applications of Pichia pastoris towards metabolic engineering and synthetic biology. Here, we report a CRISPR-based toolbox for gene editing and transcriptional regulation in P. pastoris. Based on the previous attempts in P. pastoris, we constructed a CRISPR/Cas9 system for gene editing using the RNA Pol-III-driven expression of sgRNA. The system was used to rapidly recycle the selectable marker with an eliminable episomal plasmid and achieved up to 100% knockout efficiency. Via dCas9 fused with transcriptional repressor (Mix1/RD1152) or activator (VPR), a flexible toolbox for regulation of gene expression was developed. The reporter gene eGFP driven by yeast pGAP or pCYC1 promoter showed strong inhibition (above 70%) and up to ~ 3.5-fold activation. To implement the combinatorial genetic engineering strategy, the CRISPR system contained a single Cas9-VPR protein, and engineered gRNA was introduced in P. pastoris for simultaneous gene activation, repression, and editing (CRISPR-ARE). We demonstrated that CRISPR-ARE was highly efficient for eGFP activation, mCherry repression, and ADE2 disruption, individually or in a combinatorial manner with a stable expression of multiplex sgRNAs. The simple and multifunctional toolkit demonstrated in this study will accelerate the application of P. pastoris in metabolic engineering and synthetic biology. KEY POINTS: • An eliminable CRISPR/Cas9 system yielded a highly efficient knockout of genes. • Simplified CRISPR/dCas9-based tools enabled transcriptional regulation of targeted genes. • CRISPR-ARE system achieved simultaneous gene activation, repression, and editing in P. pastoris.
Collapse
Affiliation(s)
- Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Lu Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
9
|
Crowell LE, Rodriguez SA, Love KR, Cramer SM, Love JC. Rapid optimization of processes for the integrated purification of biopharmaceuticals. Biotechnol Bioeng 2021; 118:3435-3446. [PMID: 33782945 PMCID: PMC8453909 DOI: 10.1002/bit.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Straight‐through chromatography, wherein the eluate from one column passes directly onto another column without adjustment, is one strategy to integrate and intensify manufacturing processes for biologics. Development and optimization of such straight‐through chromatographic processes is a challenge, however. Conventional high‐throughput screening methods optimize each chromatographic step independently, with limited consideration for the connectivity of steps. Here, we demonstrate a method for the development and optimization of fully integrated, multi‐column processes for straight‐through purification. Selection of resins was performed using an in silico tool for the prediction of processes for straight‐through purification based on a one‐time characterization of host‐cell proteins combined with the chromatographic behavior of the product. A two‐step optimization was then conducted to determine the buffer conditions that maximized yield while minimizing process‐ and product‐related impurities. This optimization of buffer conditions included a series of range‐finding experiments on each individual column, similar to conventional screening, followed by the development of a statistical model for the fully integrated, multi‐column process using design of experiments. We used this methodology to develop and optimize integrated purification processes for a single‐domain antibody and a cytokine, obtaining yields of 88% and 86%, respectively, with process‐ and product‐related variants reduced to phase‐appropriate levels for nonclinical material.
Collapse
Affiliation(s)
- Laura E. Crowell
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kerry R. Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Steven M. Cramer
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
10
|
Brady JR, Love JC. Alternative hosts as the missing link for equitable therapeutic protein production. Nat Biotechnol 2021; 39:404-407. [PMID: 33782611 DOI: 10.1038/s41587-021-00884-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joseph R Brady
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Dahlin LR, Guarnieri MT. Development of the high-productivity marine microalga, Picochlorum renovo, as a photosynthetic protein secretion platform. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Sawant N, Kaur K, Holland DA, Hickey JM, Agarwal S, Brady JR, Dalvie NC, Tracey MK, Velez-Suberbie ML, Morris SA, Jacob SI, Bracewell DG, Mukhopadhyay TK, Love KR, Love JC, Joshi SB, Volkin DB. Rapid Developability Assessments to Formulate Recombinant Protein Antigens as Stable, Low-Cost, Multi-Dose Vaccine Candidates: Case-Study With Non-Replicating Rotavirus (NRRV) Vaccine Antigens. J Pharm Sci 2021; 110:1042-1053. [PMID: 33285182 PMCID: PMC7884052 DOI: 10.1016/j.xphs.2020.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.
Collapse
Affiliation(s)
- Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David A Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Joseph R Brady
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C Dalvie
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Kate Tracey
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Lourdes Velez-Suberbie
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Stephen A Morris
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Shaleem I Jacob
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Kerry R Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
13
|
Kim J, Copeland CE, Seki K, Vögeli B, Kwon YC. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin. Front Bioeng Biotechnol 2020; 8:590341. [PMID: 33195157 PMCID: PMC7658397 DOI: 10.3389/fbioe.2020.590341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The modern cell-free protein synthesis (CFPS) system is expanding the opportunity of cell-free biomanufacturing as a versatile platform for synthesizing various therapeutic proteins. However, synthesizing human protein in the bacterial CFPS system remains challenging due to the low expression level, protein misfolding, inactivity, and more. These challenges limit the use of a bacterial CFPS system for human therapeutic protein synthesis. In this study, we demonstrated the improved performance of a customized CFPS platform for human therapeutic protein production by investigating the factors that limit cell-free transcription-translation. The improvement of the CFPS platform has been made in three ways. First, the cell extract was prepared from the rare tRNA expressed host strain, and CFPS was performed with a codon-optimized gene for Escherichia coli codon usage bias. The soluble protein yield was 15.2 times greater with the rare tRNA overexpressing host strain as cell extract and codon-optimized gene in the CFPS system. Next, we identify and prioritize the critical biomanufacturing factors for highly active crude cell lysate for human protein synthesis. Lastly, we engineer the CFPS reaction conditions to enhance protein yield. In this model, the therapeutic protein filaggrin expression was significantly improved by up to 23-fold, presenting 28 ± 5 μM of soluble protein yield. The customized CFPS system for filaggrin biomanufacturing described here demonstrates the potential of the CFPS system to be adapted for studying therapeutic proteins.
Collapse
Affiliation(s)
- Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States.,Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Bajic D, Chester K, Neri D. An Antibody-Tumor Necrosis Factor Fusion Protein that Synergizes with Oxaliplatin for Treatment of Colorectal Cancer. Mol Cancer Ther 2020; 19:2554-2563. [PMID: 32999042 DOI: 10.1158/1535-7163.mct-19-0729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/18/2019] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
We have cloned and characterized a novel fusion protein (Sm3E-TNF), consisting of the mAb, S 6m3E, in single-chain Fv fragment format, fused to murine TNF. The protein, which was expressed in mammalian cells and purified as a noncovalent stable homotrimer, bound to the cognate carcinoembryonic antigen (CEA) and retained TNF activity. A quantitative biodistribution experiment, performed in immunocompetent mice with CT26 colon carcinomas transfected with human CEA, revealed that Sm3E-TNF was able to preferentially accumulate in the tumors with excellent selectivity (tumor:blood ratio = 56:1, 24 hours after intravenous administration). The fusion protein mediated a rapid hemorrhagic necrosis of a large portion of the tumor mass, but a rim survived and eventually regrew. Surprisingly, the combination of Sm3E-TNF with 5-fluorouracil led to a reduction of therapeutic activity, while a combination with oxaliplatin led to a prolonged stabilization, with complete tumor eradication in 40% of treated mice. These therapy results were confirmed in a second immunocompetent mouse model of colorectal cancer (CEA-transfected C51 tumors) and provide a rationale for the possible clinical use of oxaliplatin in combination with fully human antibody-TNF fusions.
Collapse
Affiliation(s)
- Davor Bajic
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kerry Chester
- UCL Cancer Institute, University College London, London, England, United Kingdom
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
15
|
Anderson DJ, Politch JA, Cone RA, Zeitlin L, Lai SK, Santangelo PJ, Moench TR, Whaley KJ. Engineering monoclonal antibody-based contraception and multipurpose prevention technologies†. Biol Reprod 2020; 103:275-285. [PMID: 32607584 PMCID: PMC7401387 DOI: 10.1093/biolre/ioaa096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually transmitted infections are highly prevalent, and over 40% of pregnancies are unplanned. We are producing new antibody-based multipurpose prevention technology products to address these problems and fill an unmet need in female reproductive health. We used a Nicotiana platform to manufacture monoclonal antibodies against two prevalent sexually transmitted pathogens, HIV-1 and HSV-2, and incorporated them into a vaginal film (MB66) for preclinical and Phase 1 clinical testing. These tests are now complete and indicate that MB66 is effective and safe in women. We are now developing an antisperm monoclonal antibody to add contraceptive efficacy to this product. The antisperm antibody, H6-3C4, originally isolated by Shinzo Isojima from the blood of an infertile woman, recognizes a carbohydrate epitope on CD52g, a glycosylphosphatidylinositol-anchored glycoprotein found in abundance on the surface of human sperm. We engineered the antibody for production in Nicotiana; the new antibody which we call "human contraception antibody," effectively agglutinates sperm at concentrations >10 μg/ml and maintains activity under a variety of physiological conditions. We are currently seeking regulatory approval for a Phase 1 clinical trial, which will include safety and "proof of principle" efficacy endpoints. Concurrently, we are working with new antibody production platforms to bring the costs down, innovative antibody designs that may produce more effective second-generation antibodies, and delivery systems to provide extended protection.
Collapse
Affiliation(s)
- Deborah J Anderson
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Politch
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cone
- Biophysics Department, Johns Hopkins University, Baltimore, MD, USA
- Mucommune, LLC, Durham, NC, USA
| | | | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Department of Microbiomology & Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Thomas R Moench
- Mucommune, LLC, Durham, NC, USA
- ZabBio, Inc., San Diego, CA, USA
| | | |
Collapse
|
16
|
Tawfiq Z, Caiazza NC, Kambourakis S, Matsuda Y, Griffin B, Lippmeier JC, Mendelsohn BA. Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS OMEGA 2020; 5:7193-7200. [PMID: 32280859 PMCID: PMC7143411 DOI: 10.1021/acsomega.9b03628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Antibody production for ADCs (or in general) is commonly performed by CHO-based platforms and limited by volumetric productivity, expensive downstream purification, and extended optimization timelines. The Conamax platform is a novel microbial-based protein production and secretion system. A suite of synthetic biology tools have enabled high volumetric productivity (>1 g/L/d) and glycoengineering to produce simple and consistent human-like post-translational modifications. Conamax can be engineered to secrete genuine, functional monoclonal antibodies that have been successfully used to make antibody drug conjugates (ADCs) via cysteine-linked conjugation. Specifically, we evaluated ADCs derived from both a Conamax-produced anti-HER2 antibody and comparable commercially sourced Chinese hamster ovary (CHO)-produced material in an NCI-N87 gastric cancer xenograft model. Conjugation efficiency and resulting analytical data indicated comparable ADC quality and attributes. No statistical difference was observed between Conamax- and CHO-derived test articles thereby indicating similar efficacy and function. These results further demonstrate the potential of Conamax as a useful platform for the discovery and production of therapeutic antibodies and ADCs.
Collapse
Affiliation(s)
- Zhala Tawfiq
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Nicky C. Caiazza
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Spiros Kambourakis
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Benjamin Griffin
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | - Brian A. Mendelsohn
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| |
Collapse
|
17
|
Brady JR, Whittaker CA, Tan MC, Kristensen DL, Ma D, Dalvie NC, Love KR, Love JC. Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain. Biotechnol Bioeng 2020; 117:543-555. [PMID: 31654411 PMCID: PMC7003935 DOI: 10.1002/bit.27209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y-11430 (CBS7435), GS115, X-33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y-11430 exhibited the highest activity of genes involved in methanol utilization, up to two-fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X-33 displayed a six-fold higher transformation efficiency and up to 1.2-fold higher titers than Y-11430. X-33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X-33 into Y-11430 resulted in an optimized base strain that provided up to four-fold higher transformation efficiency and three-fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts.
Collapse
Affiliation(s)
- Joseph R. Brady
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Melody C. Tan
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - D. Lee Kristensen
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Duanduan Ma
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Kerry Routenberg Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - J. Christopher Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
18
|
Dalvie NC, Leal J, Whittaker CA, Yang Y, Brady JR, Love KR, Love JC. Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in Komagataella phaffii. ACS Synth Biol 2020; 9:26-35. [PMID: 31825599 PMCID: PMC7814401 DOI: 10.1021/acssynbio.9b00372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Justin Leal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Joseph R. Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
19
|
de Oliveira TA, Silva WD, da Rocha Torres N, Badaró de Moraes JV, Senra RL, de Oliveira Mendes TA, Júnior AS, Bressan GC, Fietto JLR. Application of the LEXSY Leishmania tarentolae system as a recombinant protein expression platform: A review. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? N Biotechnol 2019; 53:24-34. [DOI: 10.1016/j.nbt.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
|
21
|
Recombinant hemagglutinin produced from Chinese Hamster Ovary (CHO) stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development. Vaccine 2019; 37:6933-6941. [PMID: 31383491 PMCID: PMC7115541 DOI: 10.1016/j.vaccine.2019.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/11/2019] [Accepted: 02/15/2019] [Indexed: 01/17/2023]
Abstract
The novel H7N9 avian influenza A virus has caused human infections in China since 2013; some isolates from the fifth wave of infections have emerged as highly pathogenic avian influenza viruses. Recombinant hemagglutinin proteins of H7N9 viruses can be rapidly and efficiently produced with low-level biocontainment facilities. In this study, recombinant H7 antigen was obtained from engineered stable clones of Chinese Hamster Ovary (CHO) cells for subsequent large-scale production. The stable CHO cell clones were also adapted to grow in serum-free suspension cultures. To improve the immunogenicity of the recombinant H7 antigens, we evaluated the use of a novel combination adjuvant of PELC and CpG (PELC/CpG) to augment the anti-H7N9 immune responses in mice. We compared the effects with other adjuvants such as alum, AddaVax (MF59-like), and several Toll-like receptor ligands such as R848, CpG, and poly (I:C). With the PELC/CpG combination adjuvant, CHO cell-expressed rH7 antigens containing terminally sialylated complex type N-glycans were able to induce high titers of neutralizing antibodies in sera and conferred protection following live virus challenges. These data indicate that the CHO cell-expressed recombinant H7 antigens and a PELC/CpG combination adjuvant can be used for H7N9 subunit vaccine development.
Collapse
|
22
|
Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 2019; 116:1449-1462. [PMID: 30739333 PMCID: PMC6836876 DOI: 10.1002/bit.26951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Chapman Wright
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | - Anna Tai
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Yoseph Tsegaye
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Carl Co
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | | | - Darren Platt
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Joel R Cherry
- Research and Development, Amyris Inc., Emeryville, California
| | | |
Collapse
|
23
|
Chen TH, Liu WC, Lin CY, Liu CC, Jan JT, Spearman M, Butler M, Wu SC. Glycan-masking hemagglutinin antigens from stable CHO cell clones for H5N1 avian influenza vaccine development. Biotechnol Bioeng 2018; 116:598-609. [PMID: 30080931 DOI: 10.1002/bit.26810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/06/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Refocusing of B-cell responses can be achieved by preserving the overall fold of the antigen structure but selectively mutating the undesired antigenic sites with additional N-linked glycosylation motifs for glycan masking the vaccine antigen. We previously reported that glycan-masking recombinant H5 hemagglutinin (rH5HA) antigens on residues 83, 127, and 138 (g127 + g138 or g83 + g127 + 138 rH5HA) elicited broader neutralizing antibodies and protection against heterologous clades/subclades of high pathogenic avian influenza H5N1 viruses. In this study, we engineered the stably expressing Chinese hamster ovary (CHO) cell clones for producing the glycan-masking g127 + g138 and g83 + g127 + g138 rH5HA antigens. All of these glycan-masking rH5HA antigens produced in stable CHO cell clones were found to be mostly oligomeric structures. Only the immunization with the glycan-masking g127 + g138 but not g83 + g127 + g138 rH5HA antigens elicited more potent neutralizing antibody titers against four out of five heterologous clades/subclades of H5N1 viral strains. The increased neutralizing antibody titers against these heterologous viral strains were correlated with the increased amounts of stem-binding antibodies, only the glycan-masking g127 + g138 rH5HA antigens can translate into more protection against live viral challenges. The stable CHO cell line-produced glycan-masking g127 + g138 rH5HA can be used for H5N1 subunit vaccine development.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ying Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
24
|
The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018; 53:50-58. [DOI: 10.1016/j.copbio.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
25
|
Crowell LE, Lu AE, Love KR, Stockdale A, Timmick SM, Wu D, Wang Y(A, Doherty W, Bonnyman A, Vecchiarello N, Goodwine C, Bradbury L, Brady JR, Clark JJ, Colant NA, Cvetkovic A, Dalvie NC, Liu D, Liu Y, Mascarenhas CA, Matthews CB, Mozdzierz NJ, Shah KA, Wu SL, Hancock WS, Braatz RD, Cramer SM, Love JC. On-demand manufacturing of clinical-quality biopharmaceuticals. Nat Biotechnol 2018; 36:nbt.4262. [PMID: 30272677 PMCID: PMC6443493 DOI: 10.1038/nbt.4262] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Conventional manufacturing of protein biopharmaceuticals in centralized, large-scale, single-product facilities is not well-suited to the agile production of drugs for small patient populations or individuals. Previous solutions for small-scale manufacturing are limited in both process reproducibility and product quality, owing to their complicated means of protein expression and purification. We describe an automated, benchtop, multiproduct manufacturing system, called Integrated Scalable Cyto-Technology (InSCyT), for the end-to-end production of hundreds to thousands of doses of clinical-quality protein biologics in about 3 d. Unlike previous systems, InSCyT includes fully integrated modules for sustained production, efficient purification without the use of affinity tags, and formulation to a final dosage form of recombinant biopharmaceuticals. We demonstrate that InSCyT can accelerate process development from sequence to purified drug in 12 weeks. We used integrated design to produce human growth hormone, interferon α-2b and granulocyte colony-stimulating factor with highly similar processes on this system and show that their purity and potency are comparable to those of marketed reference products.
Collapse
Affiliation(s)
- Laura E. Crowell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Amos E. Lu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Kerry R. Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | - Alan Stockdale
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | - Steven M. Timmick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York,
USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York,
USA
- GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Di Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston,
Massachusetts, USA
| | - Yu (Annie) Wang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston,
Massachusetts, USA
| | - William Doherty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | - Alexandra Bonnyman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | - Nicholas Vecchiarello
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York,
USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York,
USA
| | - Chaz Goodwine
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York,
USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York,
USA
| | | | - Joseph R. Brady
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - John J. Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Biogen, Cambridge, Massachusetts, USA
| | - Noelle A. Colant
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
- Department of Biochemical Engineering, University College London, London, England
| | - Aleksandar Cvetkovic
- Pall Life Sciences, Westborough, Massachusetts, USA
- Sanofi, Framingham, Massachusetts, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Diana Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | - Yanjun Liu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston,
Massachusetts, USA
| | - Craig A. Mascarenhas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Catherine B. Matthews
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Nicholas J. Mozdzierz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Kartik A. Shah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
| | | | - William S. Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston,
Massachusetts, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| | - Steven M. Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York,
USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York,
USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA
| |
Collapse
|
26
|
Zahrl RJ, Mattanovich D, Gasser B. The impact of ERAD on recombinant protein secretion in Pichia pastoris (syn Komagataella spp.). MICROBIOLOGY-SGM 2018. [PMID: 29533745 DOI: 10.1099/mic.0.000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The yeast Pichia pastoris (syn. Komagataella spp.) is a popular cell factory for recombinant protein production. Yeasts in general provide a good starting point for cell factory engineering. They are intrinsically robust and easy to manipulate and cultivate. However, their secretory pathway is not evolutionarily adapted to high loads of secretory protein. In particular, more complex proteins, like the antibody fragment (Fab) used in this study, overwhelm the folding and secretion capacity. This triggers cellular stress responses, which may cause excessive intracellular degradation. Previous results have shown that, in fact, about 60 % of the newly synthesized Fab is intracellularly degraded. Endoplasmic reticulum-associated protein degradation (ERAD) is one possible intracellular degradation pathway for proteins aimed for secretion. We therefore targeted ERAD for cell factory engineering and investigated the impact on recombinant protein secretion in P. pastoris. Three components of the ERAD-L complex, which is involved in the degradation of luminal proteins, and a protein involved in proteasomal degradation, were successfully disrupted in Fab-secreting P. pastoris. Contrary to expectation, the effect on secretion was marginal. In the course of more detailed investigation of the impact of ERAD, we took a closer look at the intracellular variants of the recombinant protein. This enabled us to further zero in on the issue of intracellular Fab degradation and exclude an overshooting ER quality control. We propose that a major fraction of the Fab is actually degraded before entering the secretory pathway.
Collapse
Affiliation(s)
- Richard J Zahrl
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
27
|
Collins JH, Young EM. Genetic engineering of host organisms for pharmaceutical synthesis. Curr Opin Biotechnol 2018; 53:191-200. [PMID: 29471209 DOI: 10.1016/j.copbio.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Pharmaceutical production hosts may be derived from almost any organism, from Chinese Hamster Ovary (CHO) cell lines to isolated actinomycetes. Each host can be improved, historically only through adaptive evolution. Recently, the maturation of organism engineering has expanded the available models, methods, and tools for altering host phenotypes. New tools like CRISPR-associated endonucleases promise to enable precise cellular reprogramming and to access previously intractable hosts. In this review, we discuss the most recent advances in engineering several types of pharmaceutical production hosts. These include model organisms, potential platform hosts with advantageous metabolism or physiology, specialized producers capable of unique biosynthesis, and CHO, the most widely used recombinant protein production host. To realize improved engineered hosts, an increasing number of approaches involving DNA sequencing and synthesis, host rewriting technologies, computational methods, and organism engineering strategies must be used. Integrative workflows that enable application of the right combination of methods to the right production host could enable economical production solutions for emerging human health treatments.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|
28
|
Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology (Reading) 2018; 164:113-121. [DOI: 10.1099/mic.0.000599] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuliya M. Dyo
- Molecular Research of Microalgae Laboratory, M. A. Ajtkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biotechnology, Kazakh National Research Technology University, Almaty, Kazakhstan
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|