1
|
Jin Y, Tomeh MA, Zhang P, Su M, Zhao X, Cai Z. Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. NANOSCALE 2023; 15:3780-3795. [PMID: 36723377 DOI: 10.1039/d2nr06215a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ansamitocin P-3 (AP-3) is a promising anticancer agent. However, its low solubility has limited its biomedical applications. The preparation of liposomal formulations for the delivery of low solubility drugs using the microfluidic platform has attracted increasing attention in the pharmaceutical industry. In addition, photodynamic therapy (PDT) is a non-invasive and efficient strategy for the treatment of cancers, making photodynamic liposomes one of the most promising drug delivery systems (DDSs). In this study, a recently developed microfluidic device (swirl mixer) was used for the manufacturing of temperature-sensitive liposomes (TSL) that can be activated by near-infrared stimulation for the treatment of breast cancer. Changing the processing parameters of the microfluidic system allowed for optimizing the properties of the produced liposomes (e.g., particle size and size distribution). For the first time, the anticancer drug AP-3 and the photosensitizer indocyanine green (ICG) were encapsulated into TSL (AP-3/ICG@TSL) during microfluidic processing. The results show that AP-3/ICG@TSL are biocompatible and can significantly reduce the toxicity of AP-3 to normal tissues. After infrared laser irradiation, the heat generated from ICG not only resulted in the cancer cell toxicity, but also facilitated the release of AP-3 in tumor cells. AP-3/ICG@TSL with infrared laser irradiation was found to be able to significantly inhibit the growth of MCF-7 multicellular tumor spheroids (MCTSs) in vitro and MCF-7 tumors subcutaneously inoculated in nude mice as an in vivo model. In addition, it also showed no signs of damage to other organs. The current results demonstrated that the AP-3/ICG@TSL fabricated using the microfluidic swirl mixer is a promising DDS for breast cancer therapy.
Collapse
Affiliation(s)
- Yi Jin
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213000, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingzhu Su
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213000, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Guo S, Leng T, Sun X, Zheng J, Li R, Chen J, Hu F, Liu F, Hua Q. Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9:719. [PMID: 36421120 PMCID: PMC9687425 DOI: 10.3390/bioengineering9110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/08/2024] Open
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Leng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Wang X, Zhong JJ. Improvement of bacterial cellulose fermentation by metabolic perturbation with mixed carbon sources. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H. Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One 2022; 17:e0265517. [PMID: 35316825 PMCID: PMC8939807 DOI: 10.1371/journal.pone.0265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Collapse
Affiliation(s)
- Hong Cheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Guoqing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaqi Zhu
- Academy of Military Medical Sciences, Beijing, China
- School of Life Science and Technology, Dalian University, Dalian, China
| | | | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | | | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds. J Ind Microbiol Biotechnol 2021; 48:6347350. [PMID: 34374768 PMCID: PMC8788734 DOI: 10.1093/jimb/kuab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The aminoshikimic acid (ASA) pathway comprises a series of reactions resulting in the synthesis of 3-amino-5-hydroxybenzoic acid (AHBA), present in bacteria such as Amycolatopsis mediterranei and Streptomyces. AHBA is the precursor for synthesizing the mC7N units, the characteristic structural component of ansamycins and mitomycins antibiotics, compounds with important antimicrobial and anticancer activities. Furthermore, aminoshikimic acid, another relevant intermediate of the ASA pathway, is an attractive candidate for a precursor for oseltamivir phosphate synthesis, the most potent anti-influenza neuraminidase inhibitor treatment of both seasonal and pandemic influenza. This review discusses the relevance of the key intermediate AHBA as a scaffold molecule to synthesize diverse ansamycins and mitomycins. We describe the structure and control of the expression of the model biosynthetic cluster rif in A. mediterranei to synthesize ansamycins and review several current pharmaceutical applications of these molecules. Additionally, we discuss some relevant strategies developed for overproducing these chemicals, focusing on the relevance of the ASA pathway intermediates kanosamine, AHAB, and ASA.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rubén Mendoza-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Li J, Guo S, Hua Q, Hu F. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol Lett 2021; 43:1143-1154. [PMID: 33751317 DOI: 10.1007/s10529-020-03034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Ansamitocin (AP-3) is an ansamycins antibiotic isolated from Actinosynnema pretiosum and demonstrating high anti-tumor activity. To improve AP-3 production, the A. pretiosum ATCC 31565 strain was treated with atmospheric and room temperature plasma (ARTP). Four stable mutants were obtained by ARTP, of which the A. pretiosum L-40 mutant produced 242.9 mg/L AP-3, representing a 22.5% increase compared to the original wild type strain. With seed medium optimization, AP-3 production of mutant L-40 reached 307.8 mg/L; qRT-PCR analysis revealed that AP-3 biosynthesis-related gene expression was significantly up-regulated under optimized conditions. To further improve the AP-3 production, genome shuffling (GS) technology was used on the four A. pretiosum mutants by ARTP. After three rounds of GS combined with high-throughput screening, the genetically stable recombinant strain G3-96 was obtained. The production of AP-3 in the G3-96 strain was 410.1 mg/L in shake flask cultures, which was 44.5% higher than the L-40 production from the parental strain, and AP-3 was increased by 93.8% compared to the wild-type A. pretiosum. These results suggest that the combination of mutagenesis, seed medium optimization, and GS technology can effectively improve the AP-3 production capacity of A. pretiosum and provide an enabling methodology for AP-3 industrial production.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
8
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum. Biomolecules 2020; 10:biom10050699. [PMID: 32365857 PMCID: PMC7277737 DOI: 10.3390/biom10050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Abstract
Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing strain Actinosynnema pretiosum WXR-24 under high concentrations of exogenous AP-3 was investigated. The cell division protein FtsZ, which is the analogue of β-tubulin in bacteria, was discovered to be the AP-3 target through structural comparison followed by a SPR biosensor assay. AP-3 was trapped into a less hydrophilic groove near the GTPase pocket on FtsZ by hydrogen bounding and hydrophobic interactions, as revealed by docking analysis. After overexpression of the APASM_5716 gene coding for FtsZ in WXR-30, the resistance to AP-3 was significantly improved. Moreover, AP-3 yield was increased from 250.66 mg/L to 327.37 mg/L. After increasing the concentration of supplemented yeast extract, the final yield of AP-3 reached 371.16 mg/L. In summary, we demonstrate that the cell division protein FtsZ is newly identified as the bacterial target of AP-3, and improving resistance is an effective strategy to enhance AP-3 production.
Collapse
|
10
|
Liu T, Jin Z, Wang Z, Chen J, Wei LJ, Hua Q. Metabolomics analysis of Actinosynnema pretiosum with improved AP-3 production by enhancing UDP-glucose biosynthesis. J Biosci Bioeng 2020; 130:36-47. [PMID: 32179024 DOI: 10.1016/j.jbiosc.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Ansamitocin P-3 (AP-3) shows strong anticancer effects and has used as a payload for antibody-drug conjugates. Our previous study have shown that although genetically engineered Actinosynnema pretiosum strains with enhanced UDP-glucose (UDPG) biosynthesis displayed improved AP-3 production compared to the wild-type strain, the increase in yield was far from meeting the industrial demand. In this study, comparative metabolomics analysis complemented with quantitative real-time PCR analysis was performed for the wild-type strain and two mutants (OpgmOugp, ΔzwfΔgnd) to identify possible metabolic bottlenecks and non-intuitive targets for further enhancement of AP-3 production. We observed that enhancing intracellular UDPG availability facilitated the accumulation of intracellular N-demethyl-AP-3 and AP-3, where the transporting of them outside the cell still needs to be developed. We also found that the UDPG biosynthesis was closely associated with the availability of fructose in the medium and a suitable fructose feeding strategy could promote the further improvement of AP-3 titer. In addition, pathway abundance analysis revealed that undesired fatty acid accumulation and down-regulation of amino acid metabolism may be unfavorable for ansamitocin biosynthesis in later stage of production. These results indicate that genetic modification of the UDPG biosynthetic pathways may have pleiotropic effects on AP-3 production. Efforts must be made to eliminate these newly identified metabolic bottlenecks to boost AP-3 production in A. pretiosum.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwen Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Metabolomic change and pathway profiling reveal enhanced ansamitocin P-3 production in Actinosynnema pretiosum with low organic nitrogen availability in culture medium. Appl Microbiol Biotechnol 2020; 104:3555-3568. [PMID: 32114676 DOI: 10.1007/s00253-020-10463-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/07/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Ansamitocin P-3 (AP-3), a 19-membered polyketide macrocyclic lactam, has potent antitumor activity. Our previous study showed that a relatively low organic nitrogen concentration in culture medium could significantly improve AP-3 production of Actinosynnema pretiosum. In the present study, we aimed to reveal the possible reasons for this improvement through metabolomic and gene transcriptional analytical methods. At the same time, a metabolic pathway profile based on metabolome data and pathway correlation information was performed to obtain a systematic view of the metabolic network modulations of A. pretiosum. Orthogonal partial least squares discriminant analysis showed that nine and eleven key metabolites directly associated with AP-3 production at growth phase and ansamitocin production phase, respectively. In-depth pathway analysis results highlighted that low organic nitrogen availability had significant impacts on central carbon metabolism and amino acid metabolic pathways of A. pretiosum and these metabolic responses were found to be beneficial to precursor supply and ansamitocin biosynthesis. Furthermore, real-time PCR results showed that the transcription of genes involved in precursor and ansamitocin biosynthetic pathways were remarkably upregulated under low organic nitrogen condition thus directing increased carbon flux toward ansamitocin biosynthesis. More importantly, the metabolic pathway analysis demonstrated a competitive relationship between fatty acid and AP-3 biosynthesis could significantly affect the accumulation of AP-3. Our findings provided new knowledge on the organic nitrogen metabolism and ansamitocin biosynthetic precursor in A. pretiosum and identified several important rate-limiting steps involved in ansamitocin biosynthesis thus providing a theoretical basis of further improvement in AP-3 production.
Collapse
|
12
|
Yang J, Ye R, Zhang H, Liu Y. Amplification of lmbB1 gene in Streptomyces lincolnensis improves quantity and quality of lincomycin A fermentation. Prep Biochem Biotechnol 2020; 50:529-537. [PMID: 31916478 DOI: 10.1080/10826068.2019.1710714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As a lincosamide antibiotic, lincomycin is still important for treating diseases caused by Gram-positive bacteria. Manufacturing of lincomycin needs efforts to, e.g. maximize desirable species and minimizing unwanted fermentation byproducts. Analysis of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis, lmbB1, was shown to catalyze the conversion of L-dopa but not of L-tyrosine and then further generated the precursor of lincomycin A. Based on the principle of directed breeding, a strain termed as S. lincolnensis 24-2, was obtained in this work. By overexpressing the lmbB1 gene, this strain produces efficacious lincomycin A and suppresses melanin generation, whereas contains unwanted lincomycin B. The good fermentation performance of the mutant-lmbB1 (M-lmbB1) was also confirmed in a 15 L-scale bioreactor, which increased the lincomycin A production by 37.6% compared with control of 6435 u/mL and reduced the accumulation of melanin by 29.9% and lincomycin B by 73.4%. This work demonstrated that the amplification of lmbB1 gene mutation and metabolic engineering could promote lincomycin biosynthesis and might be helpful for reducing the production of other industrially unnecessary byproduct.
Collapse
Affiliation(s)
- Jing Yang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruifang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Yan Liu
- Topfond Pharmaceutical Co., Ltd, Henan, China
| |
Collapse
|
13
|
Yu Z, Shen X, Wu Y, Yang S, Ju D, Chen S. Enhancement of ascomycin production via a combination of atmospheric and room temperature plasma mutagenesis in Streptomyces hygroscopicus and medium optimization. AMB Express 2019; 9:25. [PMID: 30778695 PMCID: PMC6379505 DOI: 10.1186/s13568-019-0749-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Ascomycin, a key intermediate for chemical synthesis of immunosuppressive drug pimecrolimus, is produced by Streptomyces hygroscopicus var. ascomyceticus. In order to improve the strain production, the original S. hygroscopicus ATCC 14891 strain was treated here with atmospheric and room temperature plasma to obtain a stable high-producing S. hygroscopicus SFK-36 strain which produced 495.3 mg/L ascomycin, a 32.5% increase in ascomycin compared to the ATCC 14891. Then, fermentation medium was optimized using response surface methodology to further enhance ascomycin production. In the optimized medium containing 81.0 g/L soluble starch, 57.4 g/L peanut meal, and 15.8 g/L soybean oil, the ascomycin yield reached 1466.3 mg/L in flask culture. Furthermore, the fermentation process was carried out in a 5 L fermenter, and the ascomycin yield reached 1476.9 mg/L, which is the highest ascomycin yield reported so far. Therefore, traditional mutagenesis breeding combined with medium optimization is an effective approach for the enhancement of ascomycin production.
Collapse
|
14
|
Liu T, Bessembayeva L, Chen J, Wei LJ, Hua Q. Development of an economical fermentation platform for enhanced ansamitocin P-3 production in Actinosynnema pretiosum. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-018-0235-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Ding Q, Luo Q, Zhou J, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl Microbiol Biotechnol 2018; 102:8739-8751. [PMID: 30109399 DOI: 10.1007/s00253-018-9272-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/30/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Microbial L-malate production from renewable feedstock is a promising alternative to petroleum-based chemical synthesis. However, high L-malate production of Aspergillus oryzae was achieved to date using organic nitrogen, with inorganic nitrogen still unable to meet industrial applications. In the current study, we constructed a screening system and nitrogen supply strategy to improve L-malate production with ammonium sulphate [(NH4)2SO4] as the sole nitrogen source. First, we generated and identified a high-producing mutant FMME218-37, which stably boosted L-malate production from 30.73 to 78.12 g/L, using a combined screening system with morphological characteristics. Then, by analyzing the fermentation parameters and physiological characteristics, we further speculated the key factor was the unbalance of carbon and nitrogen absorption. Finally, the titer and productivity of L-malate was increased to 95.2 g/L and 0.57 g/(L h) by regulating the nitrogen supply module to balance carbon and nitrogen absorption, which represented the highest level in A. oryzae with (NH4)2SO4 as nitrogen source achieved to date. Moreover, our findings using a low-cost substrate may lead to building an economical cell factory of A. oryzae for L-malate production.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Li J, Sun R, Ning X, Wang X, Wang Z. Genome-Scale Metabolic Model of Actinosynnema pretiosum ATCC 31280 and Its Application for Ansamitocin P-3 Production Improvement. Genes (Basel) 2018; 9:E364. [PMID: 30036981 PMCID: PMC6070911 DOI: 10.3390/genes9070364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/12/2023] Open
Abstract
Actinosynnema pretiosum ATCC 31280 is the producer of antitumor agent ansamitocin P-3 (AP-3). Understanding of the AP-3 biosynthetic pathway and the whole metabolic network in A. pretiosum is important for the improvement of AP-3 titer. In this study, we reconstructed the first complete Genome-Scale Metabolic Model (GSMM) Aspm1282 for A. pretiosum ATCC 31280 based on the newly sequenced genome, with 87% reactions having definite functional annotation. The model has been validated by effectively predicting growth and the key genes for AP-3 biosynthesis. Then we built condition-specific models for an AP-3 high-yield mutant NXJ-24 by integrating Aspm1282 model with time-course transcriptome data. The changes of flux distribution reflect the metabolic shift from growth-related pathway to secondary metabolism pathway since the second day of cultivation. The AP-3 and methionine metabolisms were both enriched in active flux for the last two days, which uncovered the relationships among cell growth, activation of methionine metabolism, and the biosynthesis of AP-3. Furthermore, we identified four combinatorial gene modifications for overproducing AP-3 by in silico strain design, which improved the theoretical flux of AP-3 biosynthesis from 0.201 to 0.372 mmol/gDW/h. Upregulation of methionine metabolic pathway is a potential strategy to improve the production of AP-3.
Collapse
Affiliation(s)
- Jian Li
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Renliang Sun
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Xinjuan Ning
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Xinran Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhuo Wang
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200040, China.
| |
Collapse
|
17
|
Du Z, Zhong J. Rational approach to improve ansamitocin P‐3 production by integrating pathway engineering and substrate feeding in
Actinosynnema pretiosum. Biotechnol Bioeng 2018; 115:2456-2466. [DOI: 10.1002/bit.26775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi‐Qiang Du
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| | - Jian‐Jiang Zhong
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| |
Collapse
|
18
|
Choi SS, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim ES. Genome engineering for microbial natural product discovery. Curr Opin Microbiol 2018; 45:53-60. [PMID: 29510374 DOI: 10.1016/j.mib.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|