1
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
2
|
Vera D, García-Díaz M, Torras N, Castillo Ó, Illa X, Villa R, Alvarez M, Martinez E. A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements. Biofabrication 2024; 16:035008. [PMID: 38574551 DOI: 10.1088/1758-5090/ad3aa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells inin vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.
Collapse
Affiliation(s)
- Daniel Vera
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Torras
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Óscar Castillo
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona 08028, Spain
| |
Collapse
|
3
|
Nguyen VVT, Gkouzioti V, Maass C, Verhaar MC, Vernooij RWM, van Balkom BWM. A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis Model Mech 2023; 16:dmm050113. [PMID: 37334839 DOI: 10.1242/dmm.050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
As kidney diseases affect ∼10% of the world population, understanding the underlying mechanisms and developing therapeutic interventions are of high importance. Although animal models have enhanced knowledge of disease mechanisms, human (patho-)physiology may not be adequately represented in animals. Developments in microfluidics and renal cell biology have enabled the development of dynamic models to study renal (patho-)physiology in vitro. Allowing inclusion of human cells and combining different organ models, such as kidney-on-a-chip (KoC) models, enable the refinement and reduction of animal experiments. We systematically reviewed the methodological quality, applicability and effectiveness of kidney-based (multi-)organ-on-a-chip models, and describe the state-of-the-art, strengths and limitations, and opportunities regarding basic research and implementation of these models. We conclude that KoC models have evolved to complex models capable of mimicking systemic (patho-)physiological processes. Commercial chips and human induced pluripotent stem cells and organoids are important for KoC models to study disease mechanisms and assess drug effects, even in a personalized manner. This contributes to the Reduction, Refinement and Replacement of animal models for kidney research. A lack of reporting of intra- and inter-laboratory reproducibility and translational capacity currently hampers implementation of these models.
Collapse
Affiliation(s)
- Vivian V T Nguyen
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | - Vasiliki Gkouzioti
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Marrero D, Guimera A, Maes L, Villa R, Alvarez M, Illa X. Organ-on-a-chip with integrated semitransparent organic electrodes for barrier function monitoring. LAB ON A CHIP 2023; 23:1825-1834. [PMID: 36810654 DOI: 10.1039/d2lc01097f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organs-on-a-chip (OoC) are cell culture platforms that replicate key functional units of tissues in vitro. Barrier integrity and permeability evaluation are of utmost importance when studying barrier-forming tissues. Impedance spectroscopy is a powerful tool and is widely used to monitor barrier permeability and integrity in real-time. However, data comparison across devices is misleading due to the generation of a non-homogenous field across the tissue barrier, making impedance data normalization very challenging. In this work, we address this issue by integrating PEDOT:PSS electrodes for barrier function monitoring with impedance spectroscopy. The semitransparent PEDOT:PSS electrodes cover the entire cell culture membrane providing a homogenous electric field across the entire membrane making the cell culture area equally accountable to the measured impedance. To the best of our knowledge, PEDOT:PSS has never been used solely to monitor the impedance of cellular barriers while enabling optical inspection in the OoC. The performance of the device is demonstrated by lining the device with intestinal cells where we monitored barrier formation under flow conditions, as well as barrier disruption and recovery under exposure to a permeability enhancer. The barrier tightness and integrity, and the intercellular cleft have been evaluated by analyzing the full impedance spectrum. Furthermore, the device is autoclavable paving the way toward more sustainable OoC options.
Collapse
Affiliation(s)
- Denise Marrero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Anton Guimera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Laure Maes
- Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Gent, Belgium
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| |
Collapse
|
5
|
Sateesh J, Guha K, Dutta A, Sengupta P, Rao KS. Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment. IEEE Trans Nanobioscience 2021; 21:529-541. [PMID: 34847037 DOI: 10.1109/tnb.2021.3131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The need for innovation in medical device technology is immense; especially to replace the dialysis techniques the necessity is extremely high. The available techniques that promised to replace dialysis have not yet geared up to the marketization level. The utilization of live kidney cells makes these devices costly, delicate, and unreliable. This paper aims to design a bioreactor to mimic the reabsorption function of the kidney that is fully artificial and highly controllable, which can be one step forward to the emerging Kidney-on-Chip (KOC) technology. The additional benefit of the proposed design is that it utilizes size-dependent reabsorption along with charge-dependent reabsorption phenomena to make it more compatible with human kidney function. The electrophoresis (EP), and di-electrophoresis (DEP) techniques are utilized to mimic the reabsorption function in this report. The structure utilized in the present design exactly replicates the proximal convoluted tubule (PCT) dimensions and functions as well. The whole setup is implemented in the COMSOL Multiphysics FEM benchmark tool for simulation, and analysis with appropriate boundary conditions. The device when excited by an electric field, Electrophoresis has produced a maximum velocity of 1.07 m/s for DC excitation and di-electrophoresis has produced a maximum flow velocity of 1.23 m/s, where both the offset voltages are the same (0.7 V). The flow velocity obtained utilizing both EP and DEP produced a reabsorption rate of 50-58% depending on the voltage applied and dimensions considered which is close to 60% reabsorption rate of the normal human kidney PCT. In accordance with the outcomes produced, the di-electrophoresis technique proved to be more efficient in realizing bioreactor as compared to electrophoresis. The novelty of the present work lies in the creation of a simulation environment, rigorous analysis, and optimization of the bioreactor supported by compact mathematical model.
Collapse
|
6
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 PMCID: PMC8130670 DOI: 10.1039/d0lc01289k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/04/2021] [Indexed: 05/12/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
7
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Szymkowiak S, Sandler N, Kaplan DL. Aligned Silk Sponge Fabrication and Perfusion Culture for Scalable Proximal Tubule Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10768-10777. [PMID: 33621042 DOI: 10.1021/acsami.1c00548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chronic kidney disease and kidney failure are on the rise globally, yet there has not been a corresponding improvement in available therapies. A key challenge in a biological approach to developing kidney tissue is to identify scaffolding materials that support cell growth both in vitro and in vivo to facilitate translational goals. Scaffolds composed of silk fibroin protein possess the biocompatibility, mechanical robustness, and stability required for tissue engineering. Here, we use a silk sponge system to support kidney cells in a perfused bioreactor system. Silk fibroin protein underwent directional freezing to form parallel porous structures that mimic the native kidney structure of aligned tubules and are able to support more cells than nonaligned silk sponges. Adult immortalized renal proximal tubule epithelial cells were seeded into the sponges and cultured under static conditions for 1 week, then grown statically or with perfusion with culture media flowing through the sponge to enhance cell alignment and maturation. The sponges were imaged with confocal and scanning electron microscopies to analyze and quantify cell attachment, alignment, and expression of proteins important to proximal tubule differentiation and function. The perfused tissue constructs showed higher number of cells that are more evenly distributed through the construct and increased gene expression of several key markers of proximal tubule epithelial cell function compared to sponges grown under static conditions. These perfused tissue constructs represent a step toward a scalable approach to engineering proximal tubule structures with the potential to be used as in vitro models or as in vivo implantable tissues to supplement or replace impaired kidney function.
Collapse
Affiliation(s)
- Sophia Szymkowiak
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nathan Sandler
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Rein JL, Heja S, Flores D, Carrisoza-Gaytán R, Lin NYC, Homan KA, Lewis JA, Satlin LM. Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. Am J Physiol Cell Physiol 2020; 319:C136-C147. [PMID: 32401606 DOI: 10.1152/ajpcell.00405.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szilvia Heja
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rolando Carrisoza-Gaytán
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neil Y C Lin
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Kimberly A Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Lisa M Satlin
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Yeste J, Illa X, Alvarez M, Villa R. Engineering and monitoring cellular barrier models. J Biol Eng 2018; 12:18. [PMID: 30214484 PMCID: PMC6134550 DOI: 10.1186/s13036-018-0108-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
Epithelia and endothelia delineate tissue compartments and control their environments by regulating the passage of ions and solutes. This barrier function is essential for the development and maintenance of multicellular organisms, and its dysfunction is associated with numerous human diseases. Recent advances in biomaterials and microfabrication technologies have evolved in vitro approaches for modelling biological barriers. Current microphysiological systems have become more efficient and reliable in mimicking the cell microenvironment. Additionally, methods for the quantification of barrier permeability have long provided significant insight into their underlying mechanisms. In this review, we outline the current techniques to quantify the barrier function of engineered tissues, and we also give an overview of recent microphysiological systems of biological barriers that emulate the microenvironment and microarchitecture of native tissues.
Collapse
Affiliation(s)
- Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Mar Alvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|