1
|
Banach BB, Pletnev S, Olia AS, Xu K, Zhang B, Rawi R, Bylund T, Doria-Rose NA, Nguyen TD, Fahad AS, Lee M, Lin BC, Liu T, Louder MK, Madan B, McKee K, O'Dell S, Sastry M, Schön A, Bui N, Shen CH, Wolfe JR, Chuang GY, Mascola JR, Kwong PD, DeKosky BJ. Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site. Nat Commun 2023; 14:7593. [PMID: 37989731 PMCID: PMC10663459 DOI: 10.1038/s41467-023-42098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.
Collapse
Affiliation(s)
- Bailey B Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS, 66045, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Arne Schön
- Department of Biology, John Hopkins University, Baltimore, MD, 21218, USA
| | - Natalie Bui
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
3
|
Pruvost T, Mathieu M, Dubois S, Maillère B, Vigne E, Nozach H. Deciphering cross-species reactivity of LAMP-1 antibodies using deep mutational epitope mapping and AlphaFold. MAbs 2023; 15:2175311. [PMID: 36797224 PMCID: PMC9980635 DOI: 10.1080/19420862.2023.2175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Delineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed. We used deep mutational scanning (DMS) of the human LAMP-1 antigen displayed on yeast surface and leveraged next-generation sequencing to observe the effect of individual mutants on the binding of two LAMP-1 antibodies and to determine their functional epitopes on LAMP-1. Fine-tuned epitope mapping by DMS approaches is augmented by knowledge of experimental antigen structure. As human LAMP-1 structure has not yet been solved, we used the AlphaFold predicted structure of the full-length protein to combine with DMS data and ultimately finely map antibody epitopes. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one of the two antibodies with a LAMP-1 luminal domain. Finally, we used AlphaFold models of non-human LAMP-1 to understand the lack of mAb cross-reactivity. While both epitopes in the murine form exhibit multiple mutations in comparison to human LAMP-1, only one and two mutations in the Macaca form suffice to hinder the recognition by mAb B and A, respectively. Altogether, this study promotes a new application of AlphaFold to speed up precision mapping of antibody-antigen interactions and consequently accelerate antibody engineering for optimization.
Collapse
Affiliation(s)
- Tiphanie Pruvost
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | - Magali Mathieu
- Sanofi, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | | | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| |
Collapse
|
4
|
Banach BB, Tripathi P, Da Silva Pereira L, Gorman J, Nguyen TD, Dillon M, Fahad AS, Kiyuka PK, Madan B, Wolfe JR, Bonilla B, Flynn B, Francica JR, Hurlburt NK, Kisalu NK, Liu T, Ou L, Rawi R, Schön A, Shen CH, Teng IT, Zhang B, Pancera M, Idris AH, Seder RA, Kwong PD, DeKosky BJ. Highly protective antimalarial antibodies via precision library generation and yeast display screening. J Exp Med 2022; 219:e20220323. [PMID: 35736810 PMCID: PMC9242090 DOI: 10.1084/jem.20220323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.
Collapse
Affiliation(s)
- Bailey B. Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Jacy R. Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Nicholas K. Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Brandon J. DeKosky
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
5
|
Understanding and Modulating Antibody Fine Specificity: Lessons from Combinatorial Biology. Antibodies (Basel) 2022; 11:antib11030048. [PMID: 35892708 PMCID: PMC9326607 DOI: 10.3390/antib11030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Combinatorial biology methods such as phage and yeast display, suitable for the generation and screening of huge numbers of protein fragments and mutated variants, have been useful when dissecting the molecular details of the interactions between antibodies and their target antigens (mainly those of protein nature). The relevance of these studies goes far beyond the mere description of binding interfaces, as the information obtained has implications for the understanding of the chemistry of antibody–antigen binding reactions and the biological effects of antibodies. Further modification of the interactions through combinatorial methods to manipulate the key properties of antibodies (affinity and fine specificity) can result in the emergence of novel research tools and optimized therapeutics.
Collapse
|
6
|
Hanning KR, Minot M, Warrender AK, Kelton W, Reddy ST. Deep mutational scanning for therapeutic antibody engineering. Trends Pharmacol Sci 2021; 43:123-135. [PMID: 34895944 DOI: 10.1016/j.tips.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
The biophysical and functional properties of monoclonal antibody (mAb) drug candidates are often improved by protein engineering methods to increase the probability of clinical efficacy. One emerging method is deep mutational scanning (DMS) which combines the power of exhaustive protein mutagenesis and functional screening with deep sequencing and bioinformatics. The application of DMS has yielded significant improvements to the affinity, specificity, and stability of several preclinical antibodies alongside novel applications such as introducing multi-specific binding properties. DMS has also been applied directly on target antigens to precisely map antibody-binding epitopes and notably to profile the mutational escape potential of viral targets (e.g., SARS-CoV-2 variants). Finally, DMS combined with machine learning is enabling advances in the computational screening and engineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Kyrin R Hanning
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Mason Minot
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland
| | - Annmaree K Warrender
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand.
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland.
| |
Collapse
|
7
|
Sierocki R, Jneid B, Orsini Delgado ML, Plaisance M, Maillère B, Nozach H, Simon S. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections. PLoS Negl Trop Dis 2021; 15:e0009231. [PMID: 33711056 PMCID: PMC7990167 DOI: 10.1371/journal.pntd.0009231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents. Salmonella and Shigella are responsible for gastrointestinal diseases and continue to remain a serious health hazard in South and South-East Asia and African countries, even more with the new emergence of multi drug resistances. Developed vaccines are either not commercialized (for Shigella) or cover only a limited number of serotypes (for Salmonella). There is thus a crucial need to develop cross-protective therapies. By targeting proteins SipD and IpaD belonging respectively to the injectisome of Salmonella and Shigella and necessary to their virulence, we have shown that a monoclonal antibody (mAb) directed against a conserved common region of their apical part provides good cross-protection prophylactic efficacy. We have determined the region targeted by this mAb which could explain why it is conserved among Salmonella and Shigella bacteria.
Collapse
Affiliation(s)
- Raphaël Sierocki
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
8
|
Sjöström DJ, Lundgren A, Garforth SJ, Bjelic S. Tuning the binding interface between Machupo virus glycoprotein and human transferrin receptor. Proteins 2020; 89:311-321. [PMID: 33068039 PMCID: PMC7894301 DOI: 10.1002/prot.26016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
9
|
Klesmith JR, Hackel BJ. Improved mutant function prediction via PACT: Protein Analysis and Classifier Toolkit. Bioinformatics 2020; 35:2707-2712. [PMID: 30590444 DOI: 10.1093/bioinformatics/bty1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Deep mutational scanning experiments have enabled the measurement of the sequence-function relationship for thousands of mutations in a single experiment. The Protein Analysis and Classifier Toolkit (PACT) is a Python software package that marries the fitness metric of a given mutation within these experiments to sequence and structural features enabling downstream analyses. PACT enables the easy development of user sharable protocols for custom deep mutational scanning experiments as all code is modular and reusable between protocols. Protocols for mutational libraries with single or multiple mutations are included. To exemplify its utility, PACT assessed two deep mutational scanning datasets that measured the tradeoff of enzyme activity and enzyme stability. RESULTS PACT efficiently evaluated classifiers that predict protein mutant function tested on deep mutational scanning screens. We found that the classifiers with the lowest false positive and highest true positive rate assesses sequence homology, contact number and if mutation involves proline. AVAILABILITY AND IMPLEMENTATION PACT and the processed datasets are distributed freely under the terms of the GPL-3 license. The source code is available at GitHub (https://github.com/JKlesmith/PACT). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
10
|
Medina-Cucurella AV, Bammert GF, Dunkle W, Javens C, Zhu Y, Mutchler VT, Teel JT, Stein CA, Dunham SA, Whitehead TA. Feline Interleukin-31 Shares Overlapping Epitopes with the Oncostatin M Receptor and IL-31RA. Biochemistry 2020; 59:2171-2181. [PMID: 32459958 DOI: 10.1021/acs.biochem.0c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-31 (IL-31) is a major protein involved in severe inflammatory skin disorders. Its signaling pathway is mediated through two type I cytokine receptors, IL-31RA (also known as the gp130-like receptor) and the oncostatin M receptor (OSMR). Understanding molecular details in these interactions would be helpful for developing antagonist anti-IL-31 monoclonal antibodies (mAbs) as potential therapies. Previous studies suggest that human IL-31 binds to IL-31RA and then recruits OSMR to form a ternary complex. In this model, OSMR cannot interact with IL-31 in the absence of IL-31RA. In this work, we show that feline IL-31 (fIL-31) binds independently with feline OSMR using surface plasmon resonance, an enzyme-linked immunosorbent assay, and yeast surface display. Moreover, competition experiments suggest that OSMR shares a partially overlapping epitope with IL-31RA. We then used deep mutational scanning to map the binding sites of both receptors on fIL-31. In agreement with previous studies of the human homologue, the binding site for IL31-RA contains fIL-31 positions E20 and K82, while the binding site for OSMR comprises the "PADNFERK" motif (P103-K110) and position G38. However, our results also revealed a new overlapping site, composed of positions R69, R72, P73, D76, D81, and E97, between both receptors that we called the "shared site". The conformational epitope of an anti-feline IL-31 mAb that inhibits both OSMR and IL-31RA also mapped to this shared site. Combined, our results show that fIL-31 binds IL-31RA and OSMR independently through a partially shared epitope. These results suggest reexamination of the putative canonical mechanisms for IL-31 signaling in higher animals.
Collapse
Affiliation(s)
- Angelica V Medina-Cucurella
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 South Shaw Lane, Room 2100, East Lansing, Michigan 48824, United States
| | - Gary F Bammert
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - William Dunkle
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Veronica T Mutchler
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Janet T Teel
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Caitlin A Stein
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 South Shaw Lane, Room 2100, East Lansing, Michigan 48824, United States
| | - Steve A Dunham
- Veterinary Medicine Research and Development, Zoetis Global Therapeutic Research, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 South Shaw Lane, Room 2100, East Lansing, Michigan 48824, United States.,Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
11
|
Wollacott AM, Robinson LN, Ramakrishnan B, Tissire H, Viswanathan K, Shriver Z, Babcock GJ. Structural prediction of antibody-APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J Mol Recognit 2019; 32:e2778. [DOI: 10.1002/jmr.2778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022]
|