1
|
Dou L, Liu W, Hu J, Zhang S, Kong X, Qu X, Jiang W. Separation and purification of antimicrobial substances from Paenibacillus polymyxa KH-19 and analysis of its physicochemical characterization. Antonie Van Leeuwenhoek 2024; 118:23. [PMID: 39446216 DOI: 10.1007/s10482-024-02029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Soft rot is one of the top ten most dangerous plant pathogens in agricultural production, storage, and transport, and the use of microorganisms and their metabolites to control soft rot is a current research hotspot. In this study, we identified the antimicrobial substance in the metabolite of Paenibacillus polymyxa KH-19, and determined that the antimicrobial substance of this strain was an active protein. The protein was completely precipitated at 40-60% ammonium sulphate saturation and showed good inhibitory effects against seven pathogenic bacteria including Pectobacterium carotovorum BC2 and seven pathogenic fungi including Pyricularia oryzae. The MIC of the protein was 51.563 µg/mL, temperature acid-base UV and light stability insensitive to protease, with high-temperature resistance. The antimicrobial protein was isolated and purified by DEAE-anion exchange column and Sephadex G-75 gel filtration chromatography, and the LC-MS/MS assay identified the protein as lysophosphatidyl esterase with a molecular weight of 25.255 kDa. The purified antimicrobial protein increased the inhibitory effect against P. carotovorum BC2, with the diameter of the circle of inhibition being 26.50 ± 0.915 mm. Bioinformatics analysis showed that the protein has the molecular formula of C1117H1732N316O338S5, encodes 224 amino acids, has an aliphatic index of 88.39, and belongs to the category of hydrophilic unstable proteins. The present study is the first report of an active protein with extreme thermoplastic and resistance to P. carotovorum BC2, which provides a reference for the preparation and application of the antimicrobial substances of P. polymyxa KH-19, as well as a theoretical basis for the study of the function of lysophosphodiesterase protein and its use as a microbial preparation.
Collapse
Affiliation(s)
- Longtao Dou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Wei Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Jihua Hu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China.
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| |
Collapse
|
2
|
Bing RG, Ford KC, Willard DJ, Manesh MJH, Straub CT, Laemthong T, Alexander BH, Tanwee T, O'Quinn HC, Poole FL, Vailionis J, Zhang Y, Rodionov D, Adams MWW, Kelly RM. Engineering ethanologenicity into the extremely thermophilic bacterium Anaerocellum (f. Caldicellulosiriuptor) bescii. Metab Eng 2024; 86:99-114. [PMID: 39305946 DOI: 10.1016/j.ymben.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The anaerobic bacterium Anaerocellum (f. Caldicellulosiruptor) bescii natively ferments the carbohydrate content of plant biomass (including microcrystalline cellulose) into predominantly acetate, H2, and CO2, and smaller amounts of lactate, alanine and valine. While this extreme thermophile (growth Topt 78 °C) is not natively ethanologenic, it has been previously metabolically engineered with this property, albeit initially yielding low solvent titers (∼15 mM). Herein we report significant progress on improving ethanologenicity in A. bescii, such that titers above 130 mM have now been achieved, while concomitantly improving selectivity by minimizing acetate formation. Metabolic engineering progress has benefited from improved molecular genetic tools and better understanding of A. bescii growth physiology. Heterologous expression of a mutated thermophilic alcohol dehydrogenase (AdhE) modified for co-factor requirement, coupled with bioreactor operation strategies related to pH control, have been key to enhanced ethanol generation and fermentation product specificity. Insights gained from metabolic modeling of A. bescii set the stage for its further improvement as a metabolic engineering platform.
Collapse
Affiliation(s)
- Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kathryne C Ford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin H Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tania Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Hailey C O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jason Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Dmitry Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Kozaeva E, Nieto-Domínguez M, Hernández AD, Nikel PI. Synthetic metabolism for in vitro acetone biosynthesis driven by ATP regeneration. RSC Chem Biol 2022; 3:1331-1341. [PMID: 36349222 PMCID: PMC9627730 DOI: 10.1039/d2cb00170e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 05/14/2024] Open
Abstract
In vitro ketone production continues to be a challenge due to the biochemical features of the enzymes involved-even when some of them have been extensively characterized (e.g. thiolase from Clostridium acetobutylicum), the assembly of synthetic enzyme cascades still face significant limitations (including issues with protein aggregation and multimerization). Here, we designed and assembled a self-sustaining enzyme cascade with acetone yields close to the theoretical maximum using acetate as the only carbon input. The efficiency of this system was further boosted by coupling the enzymatic sequence to a two-step ATP-regeneration system that enables continuous, cost-effective acetone biosynthesis. Furthermore, simple methods were implemented for purifying the enzymes necessary for this synthetic metabolism, including a first-case example on the isolation of a heterotetrameric acetate:coenzyme A transferase by affinity chromatography.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Abril D Hernández
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| |
Collapse
|
4
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Kato J, Takemura K, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y. Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express 2021; 11:59. [PMID: 33891189 PMCID: PMC8065083 DOI: 10.1186/s13568-021-01220-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Gas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl–coenzyme A (Ac-CoA) and acetate produced via the Wood–Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO–H2, while autotrophic growth collapsed with CO2–H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.
Collapse
|
6
|
Liu Z, Lei D, Qiao B, Li S, Qiao J, Zhao GR. Integrative Biosynthetic Gene Cluster Mining to Optimize a Metabolic Pathway to Efficiently Produce l-Homophenylalanine in Escherichia coli. ACS Synth Biol 2020; 9:2943-2954. [PMID: 33078922 DOI: 10.1021/acssynbio.0c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mining biosynthetic genes for the exploration of hybrid metabolic pathways is a promising approach in heterologous production of natural and unnatural products. Here, we developed an integrative biosynthetic gene cluster (BGC) mining strategy to engineer the biosynthesis of l-homophenylalanine (l-Hph), an important intermediate for the synthesis of angiotensin-converting enzyme inhibitors. We assembled the putative l-Hph BGCs and integrated phylogenetic analysis with target metabolite abundance mapping to prioritize candidate BGCs. To obtain an effective l-Hph pathway, various combinations of candidate genes from different species were screened in an iterative design-build-test stepwise manner. After the pathway was strength balanced and the metabolic flux was enhanced, engineered Escherichia coli produced 1.41 g/L of l-Hph from glucose in feeding shake-flask fermentation. Our cluster mining strategy enabled optimization of the target metabolic pathway, and it would be promising for production of other valuable products in the postgenomic era.
Collapse
Affiliation(s)
- Zhenning Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Shilin Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
7
|
Straub CT, Bing RG, Otten JK, Keller LM, Zeldes BM, Adams MWW, Kelly RM. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose. Biotechnol Bioeng 2020; 117:3799-3808. [PMID: 32770740 DOI: 10.1002/bit.27529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2 , without net production of its native fermentation products, acetate and lactate.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Lisa M Keller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
8
|
Rubinstein GM, Lipscomb GL, Williams-Rhaesa AM, Schut GJ, Kelly RM, Adams MWW. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J Ind Microbiol Biotechnol 2020; 47:585-597. [PMID: 32783103 DOI: 10.1007/s10295-020-02299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Collapse
Affiliation(s)
- Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|