1
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
2
|
Jeong H, Kim Y, Lee HS. CdbC: a disulfide bond isomerase involved in the refolding of mycoloyltransferases in Corynebacterium glutamicum cells exposed to oxidative conditions. J Biochem 2024; 175:457-470. [PMID: 38227582 DOI: 10.1093/jb/mvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, 65, Semyeong-ro, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Lenz P, Bakkes PJ, Müller C, Malek M, Freudl R, Oldiges M, Drepper T, Jaeger KE, Knapp A. Analysis of protein secretion in Bacillus subtilis by combining a secretion stress biosensor strain with an in vivo split GFP assay. Microb Cell Fact 2023; 22:203. [PMID: 37805580 PMCID: PMC10559633 DOI: 10.1186/s12934-023-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh β-sheet of sfGFP, which can complement a truncated sfGFP that lacks this β-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Patrick J Bakkes
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carolin Müller
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marzena Malek
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland Freudl
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marco Oldiges
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
4
|
Müller C, Bakkes PJ, Lenz P, Waffenschmidt V, Helleckes LM, Jaeger KE, Wiechert W, Knapp A, Freudl R, Oldiges M. Accelerated strain construction and characterization of C. glutamicum protein secretion by laboratory automation. Appl Microbiol Biotechnol 2022; 106:4481-4497. [PMID: 35759036 PMCID: PMC9259529 DOI: 10.1007/s00253-022-12017-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Secretion of bacterial proteins into the culture medium simplifies downstream processing by avoiding cell disruption for target protein purification. However, a suitable signal peptide for efficient secretion needs to be identified, and currently, there are no tools available to predict optimal combinations of signal peptides and target proteins. The selection of such a combination is influenced by several factors, including protein biosynthesis efficiency and cultivation conditions, which both can have a significant impact on secretion performance. As a result, a large number of combinations must be tested. Therefore, we have developed automated workflows allowing for targeted strain construction and secretion screening using two platforms. Key advantages of this experimental setup include lowered hands-on time and increased throughput. In this study, the automated workflows were established for the heterologous production of Fusarium solani f. sp. pisi cutinase in Corynebacterium glutamicum. The target protein was monitored in culture supernatants via enzymatic activity and split GFP assay. Varying spacer lengths between the Shine-Dalgarno sequence and the start codon of Bacillus subtilis signal peptides were tested. Consistent with previous work on the secretory cutinase production in B. subtilis, a ribosome binding site with extended spacer length to up to 12 nt, which likely slows down translation initiation, does not necessarily lead to poorer cutinase secretion by C. glutamicum. The best performing signal peptides for cutinase secretion with a standard spacer length were identified in a signal peptide screening. Additional insights into the secretion process were gained by monitoring secretion stress using the C. glutamicum K9 biosensor strain. KEY POINTS: • Automated workflows for strain construction and screening of protein secretion • Comparison of spacer, signal peptide, and host combinations for cutinase secretion • Signal peptide screening for secretion by C. glutamicum using the split GFP assay.
Collapse
Affiliation(s)
- Carolin Müller
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Patrick J Bakkes
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Vera Waffenschmidt
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Laura M Helleckes
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062, Aachen, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.,Castrol Germany GmbH, 41179, Mönchengladbach, Germany
| | - Roland Freudl
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany.
| |
Collapse
|
5
|
Pourhassan N. Z, Cui H, Khosa S, Davari MD, Jaeger K, Smits SHJ, Schwaneberg U, Schmitt L. Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. Chembiochem 2022; 23:e202100702. [PMID: 35062047 PMCID: PMC9306574 DOI: 10.1002/cbic.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Indexed: 11/26/2022]
Abstract
Type 1 secretion systems (T1SS) have a relatively simple architecture compared to other classes of secretion systems and therefore, are attractive to be optimized by protein engineering. Here, we report a KnowVolution campaign for the hemolysin (Hly) enhancer fragment, an untranslated region upstream of the hlyA gene, of the hemolysin T1SS of Escherichia coli to enhance its secretion efficiency. The best performing variant of the Hly enhancer fragment contained five nucleotide mutations at five positions (A30U, A36U, A54G, A81U, and A116U) resulted in a 2-fold increase in the secretion level of a model lipase fused to the secretion carrier HlyA1. Computational analysis suggested that altered affinity to the generated enhancer fragment towards the S1 ribosomal protein contributes to the enhanced secretion levels. Furthermore, we demonstrate that involving a native terminator region along with the generated Hly enhancer fragment increased the secretion levels of the Hly system up to 5-fold.
Collapse
Affiliation(s)
- Zohreh Pourhassan N.
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
- Present address: Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 West Gregory DriveUrbanaIl 61801USA
| | - Sakshi Khosa
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University and Institute of Bio- and Geosciences IBG-1Biotechnology, Forschungszentrum Jülich GmbH52426JülichGermany
| | - Sander H. J. Smits
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
| | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
6
|
Sinner P, Stiegler M, Goldbeck O, Seibold GM, Herwig C, Kager J. Online estimation of changing metabolic capacities in continuous Corynebacterium glutamicum cultivations growing on a complex sugar mixture. Biotechnol Bioeng 2021; 119:575-590. [PMID: 34821377 PMCID: PMC9299845 DOI: 10.1002/bit.28001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023]
Abstract
Model‐based state estimators enable online monitoring of bioprocesses and, thereby, quantitative process understanding during running operations. During prolonged continuous bioprocesses strain physiology is affected by selection pressure. This can cause time‐variable metabolic capacities that lead to a considerable model‐plant mismatch reducing monitoring performance if model parameters are not adapted accordingly. Variability of metabolic capacities therefore needs to be integrated in the in silico representation of a process using model‐based monitoring approaches. To enable online monitoring of multiple concentrations as well as metabolic capacities during continuous bioprocessing of spent sulfite liquor with Corynebacterium glutamicum, this study presents a particle filtering framework that takes account of parametric variability. Physiological parameters are continuously adapted by Bayesian inference, using noninvasive off‐gas measurements. Additional information on current parameter importance is derived from time‐resolved sensitivity analysis. Experimental results show that the presented framework enables accurate online monitoring of long‐term culture dynamics, whereas state estimation without parameter adaption failed to quantify substrate metabolization and growth capacities under conditions of high selection pressure. Online estimated metabolic capacities are further deployed for multiobjective optimization to identify time‐variable optimal operating points. Thereby, the presented monitoring system forms a basis for adaptive control during continuous bioprocessing of lignocellulosic by‐product streams.
Collapse
Affiliation(s)
- Peter Sinner
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Marlene Stiegler
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Gerd M Seibold
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Herwig
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Julian Kager
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria.,Competence Center CHASE GmbH, Linz, Austria
| |
Collapse
|
7
|
Bakkes PJ, Lenz P, Müller C, Bida A, Dohmen-Olma D, Knapp A, Oldiges M, Jaeger KE, Freudl R. Biosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum. Front Microbiol 2021; 12:750150. [PMID: 34777299 PMCID: PMC8581548 DOI: 10.3389/fmicb.2021.750150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The industrial microbe Corynebacterium glutamicum is gaining substantial importance as a platform host for recombinant protein secretion. We recently developed a fluorescence-based (eYFP) C. glutamicum reporter strain for the quantification of Sec-dependent protein secretion by monitoring the secretion-related stress response and now demonstrate its applicability in optimizing the secretion of the heterologous enzyme cutinase from Fusarium solani pisi. To drive secretion, either the poor-performing PelSP or the potent NprESP Sec signal peptide from Bacillus subtilis was used. To enable easy detection and quantification of the secreted cutinase we implemented the split green fluorescent protein (GFP) assay, which relies on the GFP11-tag fused to the C-terminus of the cutinase, which can complement a truncated GFP thereby reconstituting its fluorescence. The reporter strain was transformed with different mutant libraries created by error-prone PCR, which covered the region of the signal peptide and the N-terminus of the cutinase. Fluorescence-activated cell sorting (FACS) was performed to isolate cells that show increased fluorescence in response to increased protein secretion stress. Five PelSP variants were identified that showed a 4- to 6-fold increase in the amount and activity of the secreted cutinase (up to 4,100 U/L), whereas two improved NprESP variants were identified that showed a ∼35% increase in secretion, achieving ∼5,500 U/L. Most of the isolated variants carried mutations in the h-region of the signal peptide that increased its overall hydrophobicity. Using site-directed mutagenesis it was shown that the combined mutations F11I and P16S within the hydrophobic core of the PelSP are sufficient to boost cutinase secretion in batch cultivations to the same level as achieved by the NprESP. Screening of a PelSP mutant library in addition resulted in the identification of a cutinase variant with an increased specific activity, which was attributed to the mutation A85V located within the substrate-binding region. Taken together the biosensor-based optimization approach resulted in a substantial improvement of cutinase secretion by C. glutamicum, and therefore represents a valuable tool that can be applied to any secretory protein of interest.
Collapse
Affiliation(s)
- Patrick J. Bakkes
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Carolin Müller
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Astrid Bida
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Doris Dohmen-Olma
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Roland Freudl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
8
|
Morschett H, Tenhaef N, Hemmerich J, Herbst L, Spiertz M, Dogan D, Wiechert W, Noack S, Oldiges M. Robotic integration enables autonomous operation of laboratory scale stirred tank bioreactors with model-driven process analysis. Biotechnol Bioeng 2021; 118:2759-2769. [PMID: 33871051 DOI: 10.1002/bit.27795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/14/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Given its geometric similarity to large-scale production plants and the excellent possibilities for precise process control and monitoring, the classic stirred tank bioreactor (STR) still represents the gold standard for bioprocess development at a laboratory scale. However, compared to microbioreactor technologies, bioreactors often suffer from a low degree of process automation and deriving key performance indicators (KPIs) such as specific rates or yields often requires manual sampling and sample processing. A widely used parallelized STR setup was automated by connecting it to a liquid handling system and controlling it with a custom-made process control system. This allowed for the setup of a flexible modular platform enabling autonomous operation of the bioreactors without any operator present. Multiple unit operations like automated inoculation, sampling, sample processing and analysis, and decision making, for example for automated induction of protein production were implemented to achieve such functionality. The data gained during application studies was used for fitting of bioprocess models to derive relevant KPIs being in good agreement with literature. By combining the capabilities of STRs with the flexibility of liquid handling systems, this platform technology can be applied to a multitude of different bioprocess development pipelines at laboratory scale.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Hemmerich
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Laura Herbst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Spiertz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Deniz Dogan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Sinner P, Stiegler M, Herwig C, Kager J. Noninvasive online monitoring of Corynebacterium glutamicum fed-batch bioprocesses subject to spent sulfite liquor raw material uncertainty. BIORESOURCE TECHNOLOGY 2021; 321:124395. [PMID: 33285509 DOI: 10.1016/j.biortech.2020.124395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In this study the use of a particle filter algorithm to monitor Corynebacterium glutamicum fed-batch bioprocesses with uncertain raw material input composition is shown. The designed monitoring system consists of a dynamic model describing biomass growth on spent sulfite liquor. Based on particle filtering, model simulations are aligned with continuously and noninvasively measured carbon evolution and oxygen uptake rates, giving an estimate of the most probable culture state. Applied on two validation experiments, culture states were accurately estimated during batch and fed-batch operations with root mean square errors below 1.1 g L-1 for biomass, 0.6 g L-1 for multiple substrate concentrations and 0.01 g g-1 h-1 for biomass specific substrate uptake rates. Additionally, upon fed-batch start uncertain feedstock concentrations were corrected by the estimator without the need of any additional measurements. This provides a solid basis towards a more robust operation of bioprocesses utilizing lignocellulosic side streams.
Collapse
Affiliation(s)
- Peter Sinner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Marlene Stiegler
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Julian Kager
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
10
|
Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl R. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum. Plasmid 2020; 112:102540. [DOI: 10.1016/j.plasmid.2020.102540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
11
|
Hemmerich J, Labib M, Steffens C, Reich SJ, Weiske M, Baumgart M, Rückert C, Ruwe M, Siebert D, Wendisch VF, Kalinowski J, Wiechert W, Oldiges M. Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion. Microb Biotechnol 2020; 13:2020-2031. [PMID: 32893457 PMCID: PMC7533341 DOI: 10.1111/1751-7915.13660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a 'high-performance' strain from batch screening into a 'low-performance' strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
| | - Mohamed Labib
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Carmen Steffens
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Sebastian J. Reich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Present address:
Institute of Microbiology and BiotechnologyUlm UniversityUlm89081Germany
| | - Marc Weiske
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Meike Baumgart
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Christian Rückert
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Matthias Ruwe
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Daniel Siebert
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
- Present address:
Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubing94315Germany
| | - Volker F. Wendisch
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
| | - Jörn Kalinowski
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Wolfgang Wiechert
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen52074Germany
| | - Marco Oldiges
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
12
|
Insights into the biochemical and functional characterization of sortase E transpeptidase of Corynebacterium glutamicum. Biochem J 2020; 476:3835-3847. [PMID: 31815278 DOI: 10.1042/bcj20190812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A-F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.
Collapse
|
13
|
Jurischka S, Bida A, Dohmen-Olma D, Kleine B, Potzkei J, Binder S, Schaumann G, Bakkes PJ, Freudl R. A secretion biosensor for monitoring Sec-dependent protein export in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:11. [PMID: 31964372 PMCID: PMC6975037 DOI: 10.1186/s12934-019-1273-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the industrial workhorse Corynebacterium glutamicum has gained increasing interest as a host organism for the secretory production of heterologous proteins. Generally, the yield of a target protein in the culture supernatant depends on a multitude of interdependent biological and bioprocess parameters which have to be optimized. So far, the monitoring of such optimization processes depends on the availability of a direct assay for the respective target protein that can be handled also in high throughput approaches. Since simple assays, such as standard enzymatic activity assays, are not always at hand, the availability of a general protein secretion biosensor is highly desirable. RESULTS High level secretion of proteins via the Sec protein export pathway leads to secretion stress, a phenomenon that is thought to be caused by the accumulation of incompletely or misfolded proteins at the membrane-cell envelope interface. We have analyzed the transcriptional responses of C. glutamicum to the secretory production of two different heterologous proteins and found that, in both cases, the expression of the gene encoding a homologue of the extracytosolic HtrA protease was highly upregulated. Based on this finding, a C. glutamicum Sec secretion biosensor strain was constructed in which the htrA gene on the chromosome was replaced by the eyfp gene. The fluorescence of the resulting reporter strain responded to the secretion of different heterologous proteins (cutinase from Fusarium solani pisi and alkaline phosphatase PhoA from Escherichia coli) in a dose-dependent manner. In addition, three differently efficient signal peptides for the secretory production of the cutinase could be differentiated by the biosensor signal. Furthermore, we have shown that an efficient signal peptide can be separated from a poor signal peptide by using the biosensor signal of the respective cells in fluorescence activated cell sorting experiments. CONCLUSIONS We have succeeded in the construction of a C. glutamicum biosensor strain that allows for the monitoring of Sec-dependent secretion of heterologous proteins in a dose-dependent manner, independent of a direct assay for the desired target protein.
Collapse
Affiliation(s)
- Sarah Jurischka
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Astrid Bida
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Doris Dohmen-Olma
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Britta Kleine
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Janko Potzkei
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Stephan Binder
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Georg Schaumann
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Patrick J Bakkes
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
14
|
Morschett H, Jansen R, Neuendorf C, Moch M, Wiechert W, Oldiges M. Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance. J Ind Microbiol Biotechnol 2020; 47:35-47. [PMID: 31673873 PMCID: PMC6971147 DOI: 10.1007/s10295-019-02243-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h-1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Jansen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Neuendorf
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Jansen R, Tenhaef N, Moch M, Wiechert W, Noack S, Oldiges M. FeedER: a feedback-regulated enzyme-based slow-release system for fed-batch cultivation in microtiter plates. Bioprocess Biosyst Eng 2019; 42:1843-1852. [PMID: 31399865 PMCID: PMC6800402 DOI: 10.1007/s00449-019-02180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Abstract
With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.
Collapse
Affiliation(s)
- Roman Jansen
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Niklas Tenhaef
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Aachen, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|