1
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
2
|
Vilkhovoy M, Dammalapati S, Vadhin S, Adhikari A, Varner JD. Integrated Constraint-Based Modeling of E. coli Cell-Free Protein Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528035. [PMID: 36798424 PMCID: PMC9934623 DOI: 10.1101/2023.02.10.528035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell-free protein expression has become a widely used research tool in systems and synthetic biology and a promising technology for protein biomanufacturing. Cell-free protein synthesis relies on in-vitro transcription and translation processes to produce a protein of interest. However, transcription and translation depend upon the operation of complex metabolic pathways for precursor and energy regeneration. Toward understanding the role of metabolism in a cell-free system, we developed a dynamic constraint-based simulation of protein production in the myTXTL E. coli cell-free system with and without electron transport chain inhibitors. Time-resolved absolute metabolite measurements for â"³ = 63 metabolites, along with absolute concentration measurements of the mRNA and protein abundance and measurements of enzyme activity, were integrated with kinetic and enzyme abundance information to simulate the time evolution of metabolic flux and protein production with and without inhibitors. The metabolic flux distribution estimated by the model, along with the experimental metabolite and enzyme activity data, suggested that the myTXTL cell-free system has an active central carbon metabolism with glutamate powering the TCA cycle. Further, the electron transport chain inhibitor studies suggested the presence of oxidative phosphorylation activity in the myTXTL cell-free system; the oxidative phosphorylation inhibitors provided biochemical evidence that myTXTL relied, at least partially, on oxidative phosphorylation to generate the energy required to sustain transcription and translation for a 16-hour batch reaction.
Collapse
|
3
|
Nagappa LK, Sato W, Alam F, Chengan K, Smales CM, Von Der Haar T, Polizzi KM, Adamala KP, Moore SJ. A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems. Front Bioeng Biotechnol 2022; 10:992708. [PMID: 36185432 PMCID: PMC9524191 DOI: 10.3389/fbioe.2022.992708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Farzana Alam
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | | | | | | | - Karen M Polizzi
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Simon J Moore
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
4
|
Yang C, Yang M, Zhao W, Ding Y, Wang Y, Li J. Establishing a Klebsiella pneumoniae-Based Cell-Free Protein Synthesis System. Molecules 2022; 27:molecules27154684. [PMID: 35897861 PMCID: PMC9330377 DOI: 10.3390/molecules27154684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems are emerging as powerful platforms for in vitro protein production, which leads to the development of new CFPS systems for different applications. To expand the current CFPS toolkit, here we develop a novel CFPS system derived from a chassis microorganism Klebsiella pneumoniae, an important industrial host for heterologous protein expression and the production of many useful chemicals. First, we engineered the K. pneumoniae strain by deleting a capsule formation-associated wzy gene. This capsule-deficient strain enabled easy collection of the cell biomass for preparing cell extracts. Then, we optimized the procedure of cell extract preparation and the reaction conditions for CFPS. Finally, the optimized CFPS system was able to synthesize a reporter protein (superfolder green fluorescent protein, sfGFP) with a maximum yield of 253 ± 15.79 μg/mL. Looking forward, our K. pneumoniae-based CFPS system will not only expand the toolkit for protein synthesis, but also provide a new platform for constructing in vitro metabolic pathways for the synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Miaomiao Yang
- Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China;
- Department of Biological Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wanhua Zhao
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yue Ding
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yu Wang
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
- Correspondence: (Y.W.); (J.L.)
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
5
|
Spice AJ, Aw R, Polizzi KM. Cell-Free Protein Synthesis Using Pichia pastoris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:75-88. [PMID: 34985738 DOI: 10.1007/978-1-0716-1998-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) is an industrially relevant recombinant protein platform that has been used to produce over 5000 proteins to date. Cell-free protein synthesis can be used as a screening tool before strain development or for the production of proteins that are difficult or toxic to make in vivo. Here we describe the methods for generating an active cell lysate from P. pastoris using high pressure homogenization and an improved reaction mix which results in high yields of reporter proteins such as luciferase, and complex proteins such as human serum albumin and virus-like particles.
Collapse
Affiliation(s)
- Alex J Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
6
|
Monck C, Elani Y, Ceroni F. Cell-free protein synthesis: biomedical applications and future perspectives. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Makrydaki E, Marshall O, Heide C, Buldum G, Kontoravdi C, Polizzi KM. Cell-free protein synthesis using Chinese hamster ovary cells. Methods Enzymol 2021; 659:411-435. [PMID: 34752298 DOI: 10.1016/bs.mie.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free protein synthesis (CFPS) platforms can be used for rapid and flexible expression of proteins. The use of CFPS platforms from mammalian, specifically Chinese hamster ovary (CHO) cells, offers the possibility of a rapid prototyping platform for recombinant protein production with the capabilities of post-translational modifications. In this chapter, we discuss a refined CFPS system based on CHO cells, including: extract preparation, reaction mix composition, and accessory protein supplementation to enhance expression. Specifically, when the CHO cell extract is combined with a truncated version of GADD34 and K3L, stress-induced eIF2 phosphorylation is reduced and inhibition of translation initiation is relieved, increasing yields. A brief summary of the protocol for running the CFPS reactions is also described. Overall, the method is reliable and leads to a highly reproducible expression system. Finally, the advantages and disadvantages of the platform, in addition to expected outcomes, are also discussed.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Oscar Marshall
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Chiara Heide
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Gizem Buldum
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
9
|
Heide C, Buldum G, Moya-Ramirez I, Ces O, Kontoravdi C, Polizzi KM. Design, Development and Optimization of a Functional Mammalian Cell-Free Protein Synthesis Platform. Front Bioeng Biotechnol 2021; 8:604091. [PMID: 33604330 PMCID: PMC7884609 DOI: 10.3389/fbioe.2020.604091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, we describe the stepwise development of a cell-free protein synthesis (CFPS) platform derived from cultured Chinese hamster ovary (CHO) cells. We provide a retrospective summary of the design challenges we faced, and the optimized methods developed for the cultivation of cells and the preparation of translationally active lysates. To overcome low yields, we developed procedures to supplement two accessory proteins, GADD34 and K3L, into the reaction to prevent deactivation of the translational machinery by phosphorylation. We compared different strategies for implementing these accessory proteins including two variants of the GADD34 protein to understand the potential trade-offs between yield and ease of implementation. Addition of the accessory proteins increased yield of turbo Green Fluorescent Protein (tGFP) by up to 100-fold depending on which workflow was used. Using our optimized protocols as a guideline, users can successfully develop their own functional CHO CFPS system, allowing for broader application of mammalian CFPS.
Collapse
Affiliation(s)
- Chiara Heide
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.,Department of Chemistry, Imperial College London, London, United Kingdom.,Imperial College Center for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Gizem Buldum
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Ignacio Moya-Ramirez
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.,Imperial College Center for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London, United Kingdom.,Institute of Chemical Biology, Imperial College London, London, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.,Imperial College Center for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Aw R, Spice AJ, Polizzi KM. Methods for Expression of Recombinant Proteins Using a
Pichia pastoris
Cell‐Free System. ACTA ACUST UNITED AC 2020; 102:e115. [DOI: 10.1002/cpps.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rochelle Aw
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Alex J. Spice
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Karen M. Polizzi
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| |
Collapse
|
11
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Improving the reaction mix of a Pichia pastoris cell-free system using a design of experiments approach to minimise experimental effort. Synth Syst Biotechnol 2020; 5:137-144. [PMID: 32637667 PMCID: PMC7320237 DOI: 10.1016/j.synbio.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
A renaissance in cell-free protein synthesis (CFPS) is underway, enabled by the acceleration and adoption of synthetic biology methods. CFPS has emerged as a powerful platform technology for synthetic gene network design, biosensing and on-demand biomanufacturing. Whilst primarily of bacterial origin, cell-free extracts derived from a variety of host organisms have been explored, aiming to capitalise on cellular diversity and the advantageous properties associated with those organisms. However, cell-free extracts produced from eukaryotes are often overlooked due to their relatively low yields, despite the potential for improved protein folding and posttranslational modifications. Here we describe further development of a Pichia pastoris cell-free platform, a widely used expression host in both academia and the biopharmaceutical industry. Using a minimised Design of Experiments (DOE) approach, we were able to increase the productivity of the system by improving the composition of the complex reaction mixture. This was achieved in a minimal number of experimental runs, within the constraints of the design and without the need for liquid-handling robots. In doing so, we were able to estimate the main effects impacting productivity in the system and increased the protein synthesis of firefly luciferase and the biopharmaceutical HSA by 4.8-fold and 3.5-fold, respectively. This study highlights the P. pastoris-based cell-free system as a highly productive eukaryotic platform and displays the value of minimised DOE designs.
Collapse
Key Words
- AB, Albumin Blue
- CFPS, cell-free protein synthesis
- CHO, Chinese hamster ovary cells
- Cell-free protein synthesis
- DOE, design of Experiments
- DSD, definitive screening design
- Design of experiments (DOE)
- HSA, human serum albumin
- IRES, internal ribosome entry site
- Pichia pastoris
- RRL, rabbit reticulocyte lysate
- Synthetic biology
- VLP, virus-like particles
- WGE, wheat-germ etract
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| |
Collapse
|
12
|
Colant N, Melinek B, Teneb J, Goldrick S, Rosenberg W, Frank S, Bracewell DG. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions. Biotechnol Prog 2020; 37:e3062. [PMID: 32761750 DOI: 10.1002/btpr.3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Cell-free protein synthesis (CFPS) is an established method for rapid recombinant protein production. Advantages like short synthesis times and an open reaction environment make CFPS a desirable platform for new and difficult-to-express products. Most recently, interest has grown in using the technology to make larger amounts of material. This has been driven through a variety of reasons from making site specific antibody drug conjugates, to emergency response, to the safe manufacture of toxic biological products. We therefore need robust methods to determine the appropriate reaction conditions for product expression in CFPS. Here we propose a process development strategy for Escherichia coli lysate-based CFPS reactions that can be completed in as little as 48 hr. We observed the most dramatic increases in titer were due to the E. coli strain for the cell extract. Therefore, we recommend identifying a high-producing cell extract for the product of interest as a first step. Next, we manipulated the plasmid concentration, amount of extract, temperature, concentrated reaction mix pH levels, and length of reaction. The influence of these process parameters on titer was evaluated through multivariate data analysis. The process parameters with the highest impact on titer were subsequently included in a design of experiments to determine the conditions that increased titer the most in the design space. This proposed process development strategy resulted in superfolder green fluorescent protein titers of 0.686 g/L, a 38% improvement on the standard operating conditions, and hepatitis B core antigen titers of 0.386 g/L, a 190% improvement.
Collapse
Affiliation(s)
- Noelle Colant
- Department of Biochemical Engineering, University College London, London, UK
| | - Beatrice Melinek
- Department of Biochemical Engineering, University College London, London, UK
| | - Jaime Teneb
- Department of Biochemical Engineering, University College London, London, UK
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, London, UK
| | - William Rosenberg
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
13
|
Zhang L, Guo W, Lu Y. Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications. Biotechnol J 2020; 15:e2000187. [DOI: 10.1002/biot.202000187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Wei Guo
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Zhang L, Liu WQ, Li J. Establishing a Eukaryotic Pichia pastoris Cell-Free Protein Synthesis System. Front Bioeng Biotechnol 2020; 8:536. [PMID: 32626695 PMCID: PMC7314905 DOI: 10.3389/fbioe.2020.00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, cell-free protein synthesis (CFPS) systems have been used to synthesize proteins, prototype genetic elements, manufacture chemicals, and diagnose diseases. These exciting, novel applications lead to a new wave of interest in the development of new CFPS systems that are derived from prokaryotic and eukaryotic organisms. The eukaryotic Pichia pastoris is emerging as a robust chassis host for recombinant protein production. To expand the current CFPS repertoire, we report here the development and optimization of a eukaryotic CFPS system, which is derived from a protease-deficient strain P. pastoris SMD1163. By developing a simple crude extract preparation protocol and optimizing CFPS reaction conditions, we were able to achieve superfolder green fluorescent protein (sfGFP) yields of 50.16 ± 7.49 μg/ml in 5 h batch reactions. Our newly developed P. pastoris CFPS system fits to the range of the productivity achieved by other eukaryotic CFPS platforms, normally ranging from several to tens of micrograms protein per milliliter in batch mode reactions. Looking forward, we believe that our P. pastoris CFPS system will not only expand the CFPS toolbox for synthetic biology applications, but also provide a novel platform for cost-effective, high-yielding production of complex proteins that need post-translational modification and functionalization.
Collapse
Affiliation(s)
| | | | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Front Bioeng Biotechnol 2020; 8:72. [PMID: 32117947 PMCID: PMC7033515 DOI: 10.3389/fbioe.2020.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are supramolecular protein assemblies with the potential for unique and exciting applications in synthetic biology and medicine. Despite the attention VLPs have gained thus far, considerable limitations still persist in their production. Poorly scalable manufacturing technologies and inconsistent product architectures continue to restrict the full potential of VLPs. Cell-free protein synthesis (CFPS) offers an alternative approach to VLP production and has already proven to be successful, albeit using extracts from a limited number of organisms. Using a recently developed Pichia pastoris-based CFPS system, we have demonstrated the production of the model Hepatitis B core antigen VLP as a proof-of-concept. The VLPs produced in the CFPS system were found to have comparable characteristics to those previously produced in vivo and in vitro. Additionally, we have developed a facile and rapid synthesis, assembly and purification methodology that could be applied as a rapid prototyping platform for vaccine development or synthetic biology applications. Overall the CFPS methodology allows far greater throughput, which will expedite the screening of optimal assembly conditions for more robust and stable VLPs. This approach could therefore support the characterization of larger sample sets to improve vaccine development efficiency.
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:720. [PMID: 31244868 PMCID: PMC6579924 DOI: 10.3389/fpls.2019.00720] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Over the last three decades, the expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform. However, the market is still dominated by prokaryotic and mammalian expression systems, the former offering high production capacity at a low cost, and the latter favored for the production of complex biopharmaceutical products. Although plant systems are now gaining widespread acceptance as a platform for the larger-scale production of recombinant proteins, there is still resistance to commercial uptake. This partly reflects the relatively low yields achieved in plants, as well as inconsistent product quality and difficulties with larger-scale downstream processing. Furthermore, there are only a few cases in which plants have demonstrated economic advantages compared to established and approved commercial processes, so industry is reluctant to switch to plant-based production. Nevertheless, some plant-derived proteins for research or cosmetic/pharmaceutical applications have reached the market, showing that plants can excel as a competitive production platform in some niche areas. Here, we discuss the strengths of plant expression systems for specific applications, but mainly address the bottlenecks that must be overcome before plants can compete with conventional systems, enabling the future commercial utilization of plants for the production of valuable proteins.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Geleen, Netherlands
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|