1
|
Chen B, Ren Q, Jiang P, Wu Q, Shuai Q, Yan Y. Combinatorial Synthesis of Alkyl Chain-Capped Poly(β-Amino Ester)s for Effective siRNA Delivery. Macromol Biosci 2024; 24:e2400168. [PMID: 39052313 DOI: 10.1002/mabi.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Poly (β-amino ester) (PBAE) is a class of biodegradable polymers containing ester bonds in their main chain, extensively investigated as cationic polymer carriers for siRNA. Most current PBAE carriers rely on termination with hydrophilic or charged amines. In this study, a polymer platform consisting of 168 PBAE polymers with hydrophobic alkyl chain terminals is constructed through sequential aza-Michael addition. A large number of effective carriers are identified through in vitro screening of the PBAE platform for siLuc delivery to HeLa-Luc cells. Specifically, PA8-C6 and PA8-C8 achieve remarkable gene knockdown efficacies of up to 80% with low cytotoxicity. Certain materials from the PA2 and PA5 series demonstrate potent siRNA delivery capabilities associated with elevated cytotoxicity. The pKa value of PBAE is predominantly determined by the hydrophilic amine side chains rather than the end-capping groups. A pKa range of ≈6.2-6.5 may contribute to the excellent delivery capability for PA8 series carriers. The co-formulation of PBAE carriers with helper lipids leads to the reduced size and surface charges of the polyplex NPs with siRNA, consequently decreasing the cytotoxicity and enhancing siRNA delivery efficacy. These findings hold significant implications for the development of novel degradable polymer carriers for siRNA delivery.
Collapse
Affiliation(s)
- Baiqiu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiong Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qi Shuai
- College of Pharmaceutical Sciences and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
2
|
Hu Z, Qian S, Zhao Q, Lu B, Lu Q, Wang Y, Zhang L, Mao X, Wang D, Cui W, Sun X. Engineering strategies for apoptotic bodies. SMART MEDICINE 2024; 3:e20240005. [PMID: 39420952 PMCID: PMC11425054 DOI: 10.1002/smmd.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles containing proteins, lipids, nucleic acids, and metabolites secreted by cells under various physiological and pathological conditions that mediate intercellular communication. The main types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are vesicles released during the terminal stages of cellular apoptosis, enriched with diverse biological entities and characterized by distinct morphological features. As a result, ABs possess great potential in fields like disease diagnosis, immunotherapy, regenerative therapy, and drug delivery due to their specificity, targeting capacity, and biocompatibility. However, their therapeutic efficacy is notably heterogeneous, and an overdose can lead to side effects such as accumulation in the liver, spleen, lungs, and gastrointestinal system. Through bioengineering, the properties of ABs can be optimized to enhance drug-loading efficiency, targeting precision, and multifunctionality for clinical implementations. This review focuses on strategies such as transfection, sonication, electroporation, surface engineering, and integration with biomaterials to enable ABs to load cargoes and enhance targeting, providing insights into the engineering of ABs.
Collapse
Affiliation(s)
- Zheyuan Hu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhuan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danru Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Wilson DR, Tzeng SY, Rui Y, Neshat SY, Conge MJ, Luly KM, Wang E, Firestone JL, McAuliffe J, Maruggi G, Jalah R, Johnson R, Doloff JC, Green JJ. Biodegradable Polyester Nanoparticle Vaccines Deliver Self-Amplifying mRNA in Mice at Low Doses. ADVANCED THERAPEUTICS 2023; 6:2200219. [PMID: 37743930 PMCID: PMC10516528 DOI: 10.1002/adtp.202200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/19/2023]
Abstract
Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due its self-adjuvating and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles have been successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window would benefit from further improvement. To investigate alternatives to lipid nanoparticles, we developed a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins. We evaluated the ability of these polymers to deliver SAM intramuscularly in mice, and identified a polymer-based formulation that yielded up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicited superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.
Collapse
Affiliation(s)
- David R Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marranne J Conge
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | - Joshua C Doloff
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Chemical & Biomolecular Engineering, Materials Science & Engineering, Neurosurgery, Oncology, and Ophthalmology, Sidney Kimmel Comprehensive Cancer Center and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Kuenen MK, Cuomo AM, Gray VP, Letteri RA. Net anionic poly(β-amino ester)s: synthesis, pH-dependent behavior, and complexation with cationic cargo. Polym Chem 2023; 14:421-431. [PMID: 37842180 PMCID: PMC10569340 DOI: 10.1039/d2py01319c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
As hydrolytically-labile, traditionally-cationic polymers, poly(β-amino ester)s (PBAEs) adeptly complex anionic compounds such as nucleic acids, and release their cargo as the polymer degrades. To engineer fully-degradable polyelectrolyte complexes and delivery vehicles for cationic therapeutics, we sought to invert PBAE net charge to generate net anionic PBAEs. Since PBAEs can carry up to a net charge of +1 per tertiary amine, we synthesized a series of alkyne-functionalized PBAEs that allowed installation of 2 anionic thiol-containing molecules per tertiary amine via a radical thiol-yne reaction. Finding dialysis in aqueous solution to lead to PBAE degradation, we developed a preparative size exclusion chromatography method to remove unreacted thiol from the net anionic PBAEs without triggering hydrolysis. The net anionic PBAEs display non-monotonic solution behavior as a function of pH, being more soluble at pH 4 and 10 than in intermediate pH ranges. Like cationic PBAEs, these net anionic PBAEs degrade in aqueous environments with hydrophobic content-dependent hydrolysis, as determined by 1H NMR spectroscopy. Further, these net anionic PBAEs form complexes with the cationic peptide (GR)10, which disintegrate over time as the polymer hydrolyzes. Together, these studies outline a synthesis and purification route to make previously inaccessible net anionic PBAEs with tunable solution and degradation behavior, allowing for user-determined complexation and release rates and providing opportunities for degradable polyelectrolyte complexes and cationic therapeutic delivery.
Collapse
Affiliation(s)
- Mara K Kuenen
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Alexa M Cuomo
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
5
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023; 353:518-534. [PMID: 36496051 PMCID: PMC9900387 DOI: 10.1016/j.jconrel.2022.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
For the longest time, the field of nucleic acid delivery has remained skeptical whether or not polycationic drug carrier systems would ever make it into clinical practice. Yet, with the disclosure of patents on polyethyleneimine-based RNA carriers through leading companies in the field of nucleic acid therapeutics such as BioNTech SE and the progress in clinical studies beyond phase I trials, this aloofness seems to regress. As one of the most striking characteristics of polymer-based vectors, the extraordinary tunability can be both a blessing and a curse. Yet, knowing about the adjustment screws and how they impact the performance of the drug carrier provides the formulation scientist committed to its development with a head start. Here, we equip the reader with a toolbox - a toolbox that should advise and support the developer to conceptualize a cutting-edge poly- or micelleplex system for the delivery of therapeutic nucleic acids; to be specific, to engineer the vector towards maximum endosomal escape performance at minimum toxicity. Therefore, after briefly sketching the boundary conditions of polymeric vector design, we will dive into the topic of endosomal trafficking. We will not only discuss the most recent knowledge of the endo-lysosomal compartment but further depict different hypotheses and mechanisms that facilitate the endosomal escape of polyplex systems. Finally, we will combine the different facets introduced in the previous chapters with the fundamental building blocks of polymer vector design and evaluate the advantages and drawbacks. Throughout the article, a particular focus will be placed on cellular peculiarities, not only as an additional barrier, but also to give inspiration to how such cell-specific traits might be capitalized on.
Collapse
Affiliation(s)
- Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany
| | - David C. Keul
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany,Corresponding author at: Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany
| |
Collapse
|
7
|
Street STG, Chrenek J, Harniman RL, Letwin K, Mantell JM, Borucu U, Willerth SM, Manners I. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. J Am Chem Soc 2022; 144:19799-19812. [PMID: 36260789 DOI: 10.1021/jacs.2c06695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Josie Chrenek
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Keiran Letwin
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Judith M Mantell
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, U.K
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.,GW4 Facility for High-Resolution Electron Cryo-Microscopy, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| | - Stephanie M Willerth
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.,Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
8
|
Luly KM, Yang H, Lee SJ, Wang W, Ludwig SD, Tarbox HE, Wilson DR, Green JJ, Spangler JB. Poly(Beta-Amino Ester)s as High-Yield Transfection Reagents for Recombinant Protein Production. Int J Nanomedicine 2022; 17:4469-4479. [PMID: 36176585 PMCID: PMC9514136 DOI: 10.2147/ijn.s377371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Transient transfection is an essential tool for recombinant protein production, as it allows rapid screening for expression without stable integration of genetic material into a target cell genome. Poly(ethylenimine) (PEI) is the current gold standard for transient gene transfer, but transfection efficiency and the resulting protein yield are limited by the polymer’s toxicity. This study investigated the use of a class of cationic polymers, poly(beta-amino ester)s (PBAEs), as reagents for transient transfection in comparison to linear 25 kDa PEI, a commonly used transfection reagent. Methods Transfection efficiency and protein production were assessed in human embryonic kidney 293F (HEK) and Chinese hamster ovary-S (CHO) cell suspensions using PBAE-based nanoparticles in comparison to linear 25 kDa PEI. Production of both a cytosolic reporter and secreted antibodies was investigated. Results In both HEK and CHO cells, several PBAEs demonstrated superior transfection efficiency and enhanced production of a cytosolic reporter compared to linear 25 kDa PEI. This result extended to secreted proteins, as a model PBAE increased the production of 3 different secreted antibodies compared to linear 25 kDa PEI at culture scales ranging from 20 to 2000 mL. In particular, non-viral gene transfer using the lead PBAE/plasmid DNA nanoparticle formulation led to robust transfection of mammalian cells across different constructs, doses, volumes, and cell types. Conclusion These results show that PBAEs enhance transfection efficiency and increase protein yield compared to a widespread commercially available reagent, making them attractive candidates as reagents for use in recombinant protein production.
Collapse
Affiliation(s)
- Kathryn M Luly
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huilin Yang
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J Lee
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth D Ludwig
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Haley E Tarbox
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - David R Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Neurosurgery and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? J Control Release 2022; 345:549-556. [PMID: 35358609 PMCID: PMC8958776 DOI: 10.1016/j.jconrel.2022.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
The coronavirus pandemic has changed our perception of RNA medicines, and RNA vaccines have revolutionized our pandemic preparedness. But are we indeed prepared for the next variant or the next emerging virus? How can we prepare? And what does the role of inhaled antiviral RNA play in this regard? When the pandemic started, I rerouted much of the ongoing inhaled RNA delivery research in my group towards the inhibition and treatment of respiratory viral infections. Two years later, I have taken the literature, past and ongoing clinical trials into consideration and have gained new insights based on our collaborative research which I will discuss in this oration.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany.
| |
Collapse
|
10
|
Iqbal S, Martins AF, Sohail M, Zhao J, Deng Q, Li M, Zhao Z. Synthesis and Characterization of Poly (β-amino Ester) and Applied PEGylated and Non-PEGylated Poly (β-amino ester)/Plasmid DNA Nanoparticles for Efficient Gene Delivery. Front Pharmacol 2022; 13:854859. [PMID: 35462891 PMCID: PMC9023864 DOI: 10.3389/fphar.2022.854859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Polymer-based nanocarriers require extensive knowledge of their chemistries to learn functionalization strategies and understand the nature of interactions that they establish with biological entities. In this research, the poly (β-amino ester) (PβAE-447) was synthesized and characterized, aimed to identify the influence of some key parameters in the formulation process. Initially; PβAE-447 was characterized for aqueous solubility, swelling capacity, proton buffering ability, and cytotoxicity study before nanoparticles formulation. Interestingly, the polymer-supported higher cell viability than the Polyethylenimine (PEI) at 100 μg/ml. PβAE-447 complexed with GFP encoded plasmid DNA (pGFP) generated nanocarriers of 184 nm hydrodynamic radius (+7.42 mV Zeta potential) for cell transfection. Transfection assays performed with PEGylated and lyophilized PβAE-447/pDNA complexes on HEK-293, BEAS-2B, and A549 cell lines showed better transfection than PEI. The outcomes toward A549 cells (above 66%) showed the highest transfection efficiency compared to the other cell lines. Altogether, these results suggested that characterizing physicochemical properties pave the way to design a new generation of PβAE-447 for gene delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, Brazil.,Group of Polymers and Composite Materials (GMPC), Department of Chemistry, State University of Maringá (UEM), Maringá, Brazil.,Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, United States
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Jingjing Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key University Laboratory of Pharmaceutics and Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, China.,Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, China
| |
Collapse
|
11
|
Distasio N, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater 2022; 143:356-371. [PMID: 35257950 DOI: 10.1016/j.actbio.2022.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
Abstract
Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque. The anionic coating affords NP-VHPK with significantly lower toxicity than uncoated NPs in both endothelial cells and red blood cells (RBCs). Following injection of NP-VHPK in ApoE-/- mice, Cy5-labelled IL-10 significantly accumulates in both whole aortas and aortic sinus sections containing plaque compared to injection with a non-targeted control. Furthermore, IL-10 gene delivery results in an attenuation of inflammation locally at the plaque site. NP-VHPK may thus have the potential to reduce the inflammatory component of atherosclerosis in a safe and effective manner. STATEMENT OF SIGNIFICANCE: Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-laden plaques within vascular walls. Although treatments using drugs and antibodies are now beginning to address the inflammation in atherosclerosis, neither is sufficient for long-term therapy. In this paper, we introduce a strategy to deliver genes encoding the anti-inflammatory protein interleukin-10 (IL-10) in vivo. We showed that Branched Poly(ß-aminoester) carrying the IL-10 gene are able to localize specifically at the plaque via surface-functionalized targeting moieties against inflamed VCAM-1 and/or ICAM-1 and to facilitate gene transcription by ECs to increase the local concentration of the IL-10 within the plaque. To date, there is no report involving non-viral nanotechnology to provide gene-based therapies for atherosclerosis.
Collapse
|
12
|
Kuenen MK, Mullin JA, Letteri RA. Buffering effects on the solution behavior and hydrolytic degradation of poly(β‐amino ester)s. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara K. Kuenen
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| | - James A. Mullin
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| | - Rachel A. Letteri
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| |
Collapse
|
13
|
Chaud M, Souto EB, Zielinska A, Severino P, Batain F, Oliveira-Junior J, Alves T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. TOXICS 2021; 9:131. [PMID: 34199739 PMCID: PMC8230079 DOI: 10.3390/toxics9060131] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Nanopesticides are nanostructures with two to three dimensions between 1 to 200 nm, used to carry agrochemical ingredients (AcI). Because of their unique properties, the loading of AcI into nanoparticles offers benefits when compared to free pesticides. However, with the fast development of new engineered nanoparticles for pests' control, a new type of environmental waste is being produced. This paper describes the nanopesticides sources, the harmful environmental and health effects arising from pesticide exposure. The potential ameliorative impact of nanoparticles on agricultural productivity and ecosystem challenges are extensively discussed. Strategies for controlled release and stimuli-responsive systems for slow, sustained, and targeted AcI and genetic material delivery are reported. Special attention to different nanoparticles source, the environmental behavior of nanopesticides in the crop setting, and the most recent advancements and nanopesticides representative research from experimental results are revised. This review also addresses some issues and concerns in developing, formulating and toxicity pesticide products for environmentally friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Marco Chaud
- Laboratory of Biomaterials and Nanotechnology—LaBNUS, University of Sorocaba, Sorocaba 18078-005, Brazil; (F.B.); (T.A.)
- Technological and Environmental Processes, University of Sorocaba, Sorocaba 18023-000, Brazil;
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Aleksandra Zielinska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Patricia Severino
- Institute of Technology and Research—ITP, Nanomedicine and Nanotechnology Laboratory (LNMed), Aracaju 49010-390, Brazil;
| | - Fernando Batain
- Laboratory of Biomaterials and Nanotechnology—LaBNUS, University of Sorocaba, Sorocaba 18078-005, Brazil; (F.B.); (T.A.)
| | - Jose Oliveira-Junior
- Technological and Environmental Processes, University of Sorocaba, Sorocaba 18023-000, Brazil;
- Laboratory of Applied Physics Nuclear—LAFINAU, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Thais Alves
- Laboratory of Biomaterials and Nanotechnology—LaBNUS, University of Sorocaba, Sorocaba 18078-005, Brazil; (F.B.); (T.A.)
| |
Collapse
|
14
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Distasio N, Salmon H, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. VCAM‐1‐Targeted Gene Delivery Nanoparticles Localize to Inflamed Endothelial Cells and Atherosclerotic Plaques. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas Distasio
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
| | - Hugo Salmon
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - France Dierick
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Talin Ebrahimian
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - Stephanie Lehoux
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| |
Collapse
|
17
|
Fischer D, Dusek N, Hotzel K, Heinze T. The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromol Biosci 2020; 21:e2000220. [PMID: 33025658 DOI: 10.1002/mabi.202000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Indexed: 01/04/2023]
Abstract
Dextran-formamidine esters (dextran-N-[(dimethylamino)methylene]-β-alanine ester) with different degrees of substitution (0.45-0.92) are synthesized in an one-pot reaction. Dextran (Mw 60 000 g mol-1 ) is allowed to react with unprotected beta-alanine and iminium chloride and investigated regarding the potential as gene delivery system for the transfer of plasmid DNA. With degrees of substitution ≥ 0.63 improved DNA binding with formation of enzymatically stable complexes of about 130-160 nm with negative surface charges are obtained. These physicochemical characteristics correlated with increasing transfection rates in CHO-K1 cells determined by a luciferase reporter gene assay in dependency of the number of formamidine residues, N/P ratios and amount of DNA. The role of the number of formamidine groups is also highlighted by in vitro cyto- and hemotoxicity tests under the chosen conditions. These results indicate that dextran-formamidine esters are a very promising material for the safe and efficient gene delivery.
Collapse
Affiliation(s)
- Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
| | - Niels Dusek
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Konrad Hotzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
18
|
Routkevitch D, Sudhakar D, Conge M, Varanasi M, Tzeng SY, Wilson DR, Green JJ. Efficiency of Cytosolic Delivery with Poly(β-amino ester) Nanoparticles is Dependent on the Effective p Ka of the Polymer. ACS Biomater Sci Eng 2020; 6:3411-3421. [PMID: 33463158 DOI: 10.1021/acsbiomaterials.0c00271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism by which cationic polymers containing titratable amines mediate effective endosomal escape and cytosolic delivery of nucleic acids is not well understood despite the decades of research devoted to these materials. Here, we utilize multiple assays investigating the endosomal escape step associated with plasmid delivery by polyethylenimine (PEI) and poly(β-amino esters) (PBAEs) to improve the understanding of how these cationic polymers enable gene delivery. To probe the role of these materials in facilitating endosomal escape, we utilized vesicle membrane leakage and extracellular pH modulation assays to demonstrate the influence of polymer buffering capacity and effective pKa on the delivery of the plasmid DNA. Our results demonstrate that transfection with PBAEs is highly sensitive to the effective pKa of the overall polymer, which has broad implications for transfection. In more acidic environments, PBAE-mediated transfection was inhibited, while PEI was relatively unaffected. In neutral to basic environments, PBAEs have high buffering capacities that led to dramatically improved transfection efficacy. The cellular uptake of polymeric nanoparticles overall was unchanged as a function of pH, indicating that microenvironmental acidity was important for downstream intracellular delivery efficiency. Overall, this study motivates the use of polymer chemical characteristics, such as effective pKa values, to more efficiently evaluate new polymeric materials for enhanced intracellular delivery characteristics.
Collapse
Affiliation(s)
- Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Deepti Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Marranne Conge
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mahita Varanasi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Oncology and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
19
|
Ke L, Cai P, Wu Y, Chen X. Polymeric Nonviral Gene Delivery Systems for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | - Pingqiang Cai
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | - Xiaodong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|