1
|
Reyes SJ, Pham PL, Durocher Y, Henry O. CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies. Biotechnol Prog 2024:e3507. [PMID: 39329353 DOI: 10.1002/btpr.3507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and kLa must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Department of Chemical Engineering, Polytechnique Montreal, Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Quebec, Canada
| |
Collapse
|
2
|
Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS. Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng 2023; 120:1189-1214. [PMID: 36760086 DOI: 10.1002/bit.28346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Advanced control strategies are well established in chemical, pharmaceutical, and food processing industries. Over the past decade, the application of these strategies is being explored for control of bioreactors for manufacturing of biotherapeutics. Most of the industrial bioreactor control strategies apply classical control techniques, with the control system designed for the facility at hand. However, with the recent progress in sensors, machinery, and industrial internet of things, and advancements in deeper understanding of the biological processes, coupled with the requirement of flexible production, the need to develop a robust and advanced process control system that can ease process intensification has emerged. This has further fuelled the development of advanced monitoring approaches, modeling techniques, process analytical technologies, and soft sensors. It is seen that proper application of these concepts can significantly improve bioreactor process performance, productivity, and reproducibility. This review is on the recent advancements in bioreactor control and its related aspects along with the associated challenges. This study also offers an insight into the future prospects for development of control strategies that can be designed for industrial-scale production of biotherapeutic products.
Collapse
Affiliation(s)
- Saxena Nikita
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Somesh Mishra
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Keshari Gupta
- TCS Research, Tata Consultancy Services Limited, Pune, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| |
Collapse
|
3
|
Bayer B, Duerkop M, Pörtner R, Möller J. Comparison of mechanistic and hybrid modeling approaches for characterization of a CHO cultivation process: Requirements, pitfalls and solution paths. Biotechnol J 2023; 18:e2200381. [PMID: 36382343 DOI: 10.1002/biot.202200381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Despite the advantages of mathematical bioprocess modeling, successful model implementation already starts with experimental planning and accordingly can fail at this early stage. For this study, two different modeling approaches (mechanistic and hybrid) based on a four-dimensional antibody-producing CHO fed-batch process are compared. Overall, 33 experiments are performed in the fractional factorial four-dimensional design space and separated into four different complex data partitions subsequently used for model comparison and evaluation. The mechanistic model demonstrates the advantage of prior knowledge (i.e., known equations) to get informative value relatively independently of the utilized data partition. The hybrid approach displayes a higher data dependency but simultaneously yielded a higher accuracy on all data partitions. Furthermore, our results demonstrate that independent of the chosen modeling framework, a smart selection of only four initial experiments can already yield a very good representation of a full design space independent of the chosen modeling structure. Academic and industry researchers are recommended to pay more attention to experimental planning to maximize the process understanding obtained from mathematical modeling.
Collapse
Affiliation(s)
| | | | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Möller
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
4
|
Li WF, Fan ZL, Wang XY, Lin Y, Wang TY. Combination of sodium butyrate and decitabine promotes transgene expression in CHO cells via apoptosis inhibition. N Biotechnol 2022; 69:8-17. [PMID: 35217202 DOI: 10.1016/j.nbt.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are currently the most widely used host cells for production of recombinant therapeutic proteins (RTPs). Small-molecule additives related to cell cycle apoptosis and autophagy regulation have been used to promote RTP production. By combining two small-molecule additives, positive synergistic effects on transgene expression were observed in CHO cells. In the present study, six small-molecule additives were used, including hydrocinnamic acid (HCA), sodium butyrate (NaB), lithium acetate (LiAc), sodium succinate dibasic hexahydrate (SDH), decitabine (DAC), and sodium propionate (SP). Experiments to test the effects of their pairwise combinations on two different recombinant CHO cell lines (rCHO) were designed using Design-Expert 12.0. Different effects of various pairs of small molecules on apoptosis- and autophagy-related protein expression were observed in the rCHOs. The results showed that compared to the control culture, NaB alone increased the volumetric yield and specific productivity (Qp) by 166% and 143%, respectively. The volumetric yield and Qp of NaB combined with DAC (Cg1)-treated cells increased by 178% and 212%, respectively. Cg1 selectively blocked the cells in the G0/G1 cell cycle stage. The relative expression levels of B-cell lymphoma 2 (Bcl-2), Beclin 1, and microtubule-associated protein light chain 3 (LC3B) in Cg1-treated CHO cells were significantly increased, while relative levels of cleaved caspase-3 expression were significantly decreased. In conclusion, Cg1 had the most obvious effect on RTP production and Qp in CHO cells, suggesting the Cg1 combination of small molecules may be used to improve the expression of recombinant protein in CHO cells.
Collapse
Affiliation(s)
- Wei-Feng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Zhen-Lin Fan
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China; Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
5
|
Ji X, Lee YJ, Eyster T, Parrillo A, Galosy S, Ao Z, Patel P, Zhu Y. Characterization of cell cycle and apoptosis in Chinese hamster ovary cell culture using flow cytometry for bioprocess monitoring. Biotechnol Prog 2021; 38:e3211. [PMID: 34549552 DOI: 10.1002/btpr.3211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 11/09/2022]
Abstract
Chinese hamster ovary (CHO) cells are by far the most important mammalian cell lines used for producing antibodies and other therapeutic proteins. It is critical to fully understand their physiological conditions during a bioprocess in order to achieve the highest productivity and the desired product quality. Flow cytometry technology possesses unique advantages for measuring multiple cellular attributes for a given cell and examining changes in cell culture heterogeneity over time that can be used as metrics for enhanced process understanding and control strategy. Flow cytometry-based assays were utilized to examine the progression of cell cycle and apoptosis in three case studies using different antibody-producing CHO cell lines in both fed-batch and perfusion bioprocesses. In our case studies, we found that G0/G1 phase distribution and early apoptosis accumulation responded to subtle changes in culture conditions, such as pH shifting or momentary glucose depletion. In a perfusion process, flow cytometry provided an insightful understanding of the cell physiological status under a hypothermic condition. More importantly, these changes in cell cycle and apoptosis were not detected by a routine trypan blue exclusion-based cell counting and viability measurement. In summary, integration of flow cytometry into bioprocesses as a process analytical technology tool can be beneficial for establishing optimum process conditions and process control.
Collapse
Affiliation(s)
- Xiaodan Ji
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Young Je Lee
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Tom Eyster
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Alexis Parrillo
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Sybille Galosy
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Zhaohui Ao
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Pramthesh Patel
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Yuan Zhu
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Alhuthali S, Kotidis P, Kontoravdi C. Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation. Int J Mol Sci 2021; 22:ijms22073290. [PMID: 33804825 PMCID: PMC8037477 DOI: 10.3390/ijms22073290] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg-1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg-1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.
Collapse
|
7
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
8
|
Möller J, Bhat K, Guhl L, Pörtner R, Jandt U, Zeng A. Regulation of pyruvate dehydrogenase complex related to lactate switch in CHO cells. Eng Life Sci 2021; 21:100-114. [PMID: 33716610 PMCID: PMC7923601 DOI: 10.1002/elsc.202000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/04/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolism of Chinese hamster ovary (CHO) cell lines is typically characterized by high rates of aerobic glycolysis with increased lactate formation, known as the "Warburg" effect. Although this metabolic state can switch to lactate consumption, the involved regulations of the central metabolism have only been partially studied so far. An important reaction transferring the lactate precursor, pyruvate, into the tricarboxylic acid cycle is the decarboxylation reaction catalyzed by the pyruvate dehydrogenase enzyme complex (PDC). Among other mechanisms, PDC is mainly regulated by phosphorylation-dephosphorylation at the three sites Ser232, Ser293, and Ser300. In this work, the PDC phosphorylation in antibody-producing CHO DP-12 cell culture is investigated during the lactate switch. Batch cultivations were carried out with frequent sampling (every 6 h) during the transition from lactate formation to lactate uptake, and the PDC phosphorylation levels were quantified using a novel indirect flow cytometry protocol. Contrary to the expected activation of PDC (i.e., reduced PDC phosphorylation) during lactate consumption, Ser293 and Ser300 phosphorylation levels were 33% higher compared to the phase of glucose excess. At the same time, the relative phosphorylation level of Ser232 increased steadily throughout the cultivation (66% increase overall). The intracellular pyruvate was found to accumulate only during the period of high lactate production, while acetyl-CoA showed nearly no accumulation. These results indicate a deactivation of PDC and reduced oxidative metabolism during lactate switch even though the cells undergo a metabolic transition to lactate-based cell growth and metabolism. Overall, this study provides a unique view on the regulation of PDC during the lactate switch, which contributes to an improved understanding of PDC and its interaction with the bioprocess.
Collapse
Affiliation(s)
- Johannes Möller
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Krathika Bhat
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Lotta Guhl
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Ralf Pörtner
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Uwe Jandt
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
9
|
Near-Physiological Cell Cycle Synchronization with Countercurrent Centrifugal Elutriation. Methods Mol Biol 2021. [PMID: 31858459 DOI: 10.1007/978-1-0716-0191-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The bioreactor conditions and cell diversity in mammalian cell cultures are often regarded as homogeneous. Recently, the influence of various kinds of heterogeneities on production rates receives increasing attention. Besides spatial gradients within the cultivation system, the variation between cell populations and the progress of the cells through the cell cycle can affect the dynamics of the cultivation process. Strong metabolic up- and down-regulations leading to variable productivities, even in exponentially growing cell cultures, have been identified in CHO cell cultivations. Consequently, scientific studies of cell cycle-related effects and metabolic regulations require experiments utilizing cell cycle-enriched subpopulations. Importantly, the enrichment procedure itself must not strongly interfere with the cell culture under investigation. Such subpopulations can be generated by near-physiological countercurrent centrifugal elutriation, which is described in the following chapter. At first, a brief overview regarding the cell cycle, currently identified effects and commonly used methods, and their applicability is outlined. Then, the experimental setup and the synchronization itself are explained.
Collapse
|
10
|
Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses. Bioprocess Biosyst Eng 2021; 44:683-700. [PMID: 33471162 PMCID: PMC7997827 DOI: 10.1007/s00449-020-02478-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 10/26/2022]
Abstract
Bioprocess development and optimization are still cost- and time-intensive due to the enormous number of experiments involved. In this study, the recently introduced model-assisted Design of Experiments (mDoE) concept (Möller et al. in Bioproc Biosyst Eng 42(5):867, https://doi.org/10.1007/s00449-019-02089-7 , 2019) was extended and implemented into a software ("mDoE-toolbox") to significantly reduce the number of required cultivations. The application of the toolbox is exemplary shown in two case studies with Saccharomyces cerevisiae. In the first case study, a fed-batch process was optimized with respect to the pH value and linearly rising feeding rates of glucose and nitrogen source. Using the mDoE-toolbox, the biomass concentration was increased by 30% compared to previously performed experiments. The second case study was the whole-cell biocatalysis of ethyl acetoacetate (EAA) to (S)-ethyl-3-hydroxybutyrate (E3HB), for which the feeding rates of glucose, nitrogen source, and EAA were optimized. An increase of 80% compared to a previously performed experiment with similar initial conditions was achieved for the E3HB concentration.
Collapse
|
11
|
Arndt L, Wiegmann V, Kuchemüller KB, Baganz F, Pörtner R, Möller J. Model-based workflow for scale-up of process strategies developed in miniaturized bioreactor systems. Biotechnol Prog 2021; 37:e3122. [PMID: 33438830 DOI: 10.1002/btpr.3122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Miniaturized bioreactor (MBR) systems are routinely used in the development of mammalian cell culture processes. However, scale-up of process strategies obtained in MBR- to larger scale is challenging due to mainly non-holistic scale-up approaches. In this study, a model-based workflow is introduced to quantify differences in the process dynamics between bioreactor scales and thus enable a more knowledge-driven scale-up. The workflow is applied to two case studies with antibody-producing Chinese hamster ovary cell lines. With the workflow, model parameter distributions are estimated first under consideration of experimental variability for different scales. Second, the obtained individual model parameter distributions are tested for statistical differences. In case of significant differences, model parametric distributions are transferred between the scales. In case study I, a fed-batch process in a microtiter plate (4 ml working volume) and lab-scale bioreactor (3750 ml working volume) was mathematically modeled and evaluated. No significant differences were identified for model parameter distributions reflecting process dynamics. Therefore, the microtiter plate can be applied as scale-down tool for the lab-scale bioreactor. In case study II, a fed-batch process in a 24-Deep-Well-Plate (2 ml working volume) and shake flask (40 ml working volume) with two feed media was investigated. Model parameter distributions showed significant differences. Thus, process strategies were mathematically transferred, and model predictions were simulated for a new shake flask culture setup and confirmed in validation experiments. Overall, the workflow enables a knowledge-driven evaluation of scale-up for a more efficient bioprocess design and optimization.
Collapse
Affiliation(s)
- Lukas Arndt
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Vincent Wiegmann
- University College London, The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, London, UK
| | - Kim B Kuchemüller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Frank Baganz
- University College London, The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, London, UK
| | - Ralf Pörtner
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Johannes Möller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| |
Collapse
|
12
|
Richelle A, Lee BW, Portela RMC, Raley J, Stosch M. Analysis of Transformed Upstream Bioprocess Data Provides Insights into Biological System Variation. Biotechnol J 2020; 15:e2000113. [DOI: 10.1002/biot.202000113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Richelle
- Process Systems Biology and Engineering Center of Excellence Technical Research and Development, GSK Rixensart 1330 Belgium
| | - Boung Wook Lee
- Microbial and Cell Culture Development Biopharm Product Development & Supply, GSK King of Prussia PA 19406 USA
| | - Rui M. C. Portela
- Process Systems Biology and Engineering Center of Excellence Technical Research and Development, GSK Rixensart 1330 Belgium
| | - Jonathan Raley
- Microbial and Cell Culture Development Biopharm Product Development & Supply, GSK King of Prussia PA 19406 USA
| | - Moritz Stosch
- Process Systems Biology and Engineering Center of Excellence Technical Research and Development, GSK Rixensart 1330 Belgium
| |
Collapse
|
13
|
Möller J, Rosenberg M, Riecken K, Pörtner R, Zeng AP, Jandt U. Quantification of the dynamics of population heterogeneities in CHO cultures with stably integrated fluorescent markers. Anal Bioanal Chem 2020; 412:2065-2080. [PMID: 32130440 PMCID: PMC7072063 DOI: 10.1007/s00216-020-02401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Cell population heterogeneities and their changes in mammalian cell culture processes are still not well characterized. In this study, the formation and dynamics of cell population heterogeneities were investigated with flow cytometry and stably integrated fluorescent markers based on the lentiviral gene ontology (LeGO) vector system. To achieve this, antibody-producing CHO cells were transduced with different LeGO vectors to stably express single or multiple fluorescent proteins. This enables the tracking of the transduced populations and is discussed in two case studies from the field of bioprocess engineering: In case study I, cells were co-transduced to express red, green, and blue fluorescent proteins and the development of sub-populations and expression heterogeneities were investigated in high passage cultivations (total 130 days). The formation of a fast-growing and more productive population was observed with a simultaneous increase in cell density and product titer. In case study II, different preculture growth phases and their influence on the population dynamics were investigated in mixed batch cultures with flow cytometry (offline and automated). Four cell line derivatives, each expressing a different fluorescent protein, were generated and cultivated for different time intervals, corresponding to different growth phases. Mixed cultures were inoculated from them, and changes in the composition of the cell populations were observed during the first 48 h of cultivation with reduced process productivity. In summary, we showed how the dynamics of population heterogeneities can be characterized. This represents a novel approach to investigate the dynamics of cell population heterogeneities under near-physiological conditions with changing productivity in mammalian cell culture processes.
Collapse
Affiliation(s)
- Johannes Möller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany.
| | - Marcel Rosenberg
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ralf Pörtner
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - An-Ping Zeng
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - Uwe Jandt
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| |
Collapse
|
14
|
Möller J, Hernández Rodríguez T, Müller J, Arndt L, Kuchemüller KB, Frahm B, Eibl R, Eibl D, Pörtner R. Model uncertainty-based evaluation of process strategies during scale-up of biopharmaceutical processes. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Digital Twins and Their Role in Model-Assisted Design of Experiments. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:29-61. [PMID: 32797268 DOI: 10.1007/10_2020_136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rising demands for biopharmaceuticals and the need to reduce manufacturing costs increase the pressure to develop productive and efficient bioprocesses. Among others, a major hurdle during process development and optimization studies is the huge experimental effort in conventional design of experiments (DoE) methods. As being an explorative approach, DoE requires extensive expert knowledge about the investigated factors and their boundary values and often leads to multiple rounds of time-consuming and costly experiments. The combination of DoE with a virtual representation of the bioprocess, called digital twin, in model-assisted DoE (mDoE) can be used as an alternative to decrease the number of experiments significantly. mDoE enables a knowledge-driven bioprocess development including the definition of a mathematical process model in the early development stages. In this chapter, digital twins and their role in mDoE are discussed. First, statistical DoE methods are introduced as the basis of mDoE. Second, the combination of a mathematical process model and DoE into mDoE is examined. This includes mathematical model structures and a selection scheme for the choice of DoE designs. Finally, the application of mDoE is discussed in a case study for the medium optimization in an antibody-producing Chinese hamster ovary cell culture process.
Collapse
|
16
|
Moser A, Appl C, Brüning S, Hass VC. Mechanistic Mathematical Models as a Basis for Digital Twins. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 176:133-180. [DOI: 10.1007/10_2020_152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|