1
|
Han X, Zhang Q, Zhang G, Sun B, Wu L, Li G. Controllable Fabrication of Highly Ordered Spherical Microcavity Arrays by Replica Molding of In Situ Self-Emulsified Droplets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26886-26898. [PMID: 38717383 DOI: 10.1021/acsami.4c02176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Ordered spherical hollow micro- and nanostructures hold great appeal in the fields of cell biology and optics. However, it is extremely challenging for standard lithography techniques to achieve spherical micro-/nanocavities. In this paper, we describe a simple, cost-effective, and scalable approach to fabricate highly ordered spherical microcavity arrays by replica molding of in situ self-emulsified droplets. The in situ self-emulsion involves a two-step process: discontinuous dewetting-induced liquid partition and interfacial tension-driven liquid spherical transformation. Subsequent replica molding of the droplets creates spherical microcavity arrays. The shapes and sizes of the microcavities can be easily modulated by varying the compositions of the droplet templates or utilizing an osmotically driven water permeation. To demonstrate the utility of this method, we employed it to create a spherical microwell array for the mass production of embryoid bodies with high viability and minimal loss. In addition, we also demonstrated the optical functions of the generated spherical microcavities by using them as microlenses. We believe that our proposed method will open exciting avenues in fields ranging from regenerative medicine and microchemistry to optical applications.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Qi Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Guoyuan Zhang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bangyong Sun
- School of Future Technology, Xinjiang University, Urumqi 830017, China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Guo W, Chen Z, Feng Z, Li H, Zhang M, Zhang H, Cui X. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review. MICROMACHINES 2022; 13:mi13091555. [PMID: 36144178 PMCID: PMC9505614 DOI: 10.3390/mi13091555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.
Collapse
Affiliation(s)
- Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Zejingqiu Chen
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528311, China
| | - Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Han Q, Zheng T, Zhang L, Wu N, Liang J, Wu H, Li G. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:747-768. [PMID: 34865608 DOI: 10.1080/09205063.2021.2014113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The repair of spinal cord injury is a great challenge in clinical. Improving the microenvironment of the injured site is the key strategy for accelerating axon regeneration and synaptic formation. Herein, a kind of silk fibroin microspheres functionalized by metformin through dopamine was developed using water-in-oil emulsification-diffusion method and surface modification technique, and the effect on cortical neuron was evaluated. The results showed that the microspheres showed a uniform size distribution with the diameter of around 60 μm and a concave structure. Moreover, the microspheres possessed good injectability and stability. In addition, the metformin could be successfully immobilized in the silk fibroin microspheres. The cell culture results displayed that the growth and morphology of cortical neurons on the microspheres with metformin concentration of 5 mg/mL and 10 mg/mL were obviously better than that on other samples. Notably, the spread area of single cortical cell on silk fibroin microspheres was increased with the ascending metformin concentration. Therefore, the results indicated that the metformin loaded silk fibroin microsphere could obviously improve the growth and spreading behavior of cortical neuron. The study may provide an important experimental basis for the development of drug loaded injectable biomaterials scaffolds for the treatment of spinal cord injury and have great potential for spinal cord regeneration.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Linhui Zhang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Ningling Wu
- School of Medical, Nantong University, Nantong, P.R. China
| | - Jiaqi Liang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Hong Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| |
Collapse
|
4
|
Xu L, Li X, Li W, Chang K, Yang H, Tao N, Zhang P, Payne EM, Modavi C, Humphries J, Lu C, Abate AR. Microbowls with Controlled Concavity for Accurate Microscale Mass Spectrometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108194. [PMID: 35045587 PMCID: PMC9028217 DOI: 10.1002/adma.202108194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Patterned surfaces can enhance the sensitivity of laser desorption ionization mass spectrometry by segregating and concentrating analytes, but their fabrication can be challenging. Here, a simple method to fabricate substrates patterned with micrometer-scale wells that yield more accurate and sensitive mass spectrometry measurements compared to flat surfaces is described. The wells can also concentrate and localize cells and beads for cell-based assays.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
| | - Wenzong Li
- Amyris Inc.5885 Hollis St #100EmeryvilleCA94608USA
| | - Kai‐chun Chang
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
| | - Hyunjun Yang
- Institute for Neurodegenerative DiseasesWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCA94158USA
| | | | - Pengfei Zhang
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
| | - Emory M. Payne
- Department of ChemistryUniversity of MichiganAnn ArborMI48104USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
| | | | - Chia‐Wei Lu
- Amyris Inc.5885 Hollis St #100EmeryvilleCA94608USA
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCA94158USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
5
|
Hong HJ, Cho JM, Yoon YJ, Choi D, Lee S, Lee H, Ahn S, Koh WG, Lim JY. Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. J Tissue Eng 2022; 13:20417314221085645. [PMID: 35422983 PMCID: PMC9003645 DOI: 10.1177/20417314221085645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional spheroid culture enhances cell-to-cell interactions among stem cells and promotes the expression of stem cell properties; however, subsequent retrieval and delivery of these cells remain a challenge. We fabricated a thermoresponsive fiber-based microwell scaffold by combining electrospinning and hydrogel micropatterning. The resultant scaffold appeared to facilitate the formation of cellular spheroids of uniform size and enabled the expression of more stem cell-secreting growth factor genes (EGF, IGF-1, FGF1, FGF2, and HGF), pluripotent stem cell-related genes (SOX2 and NANOG), and adult epithelial stem cell-related genes (LGR4, LGR5, and LGR6) than salivary gland stem cells in a monolayer culture (SGSCmonolayer). The spheroids could be retrieved efficiently by decreasing temperature. SGSC-derived spheroid (SGSCspheroid) cells were then implanted into the submandibular glands of mice at 2 weeks after fractionated X-ray irradiation at a dose of 7.5 Gy/day. At 16 weeks post-irradiation, restoration of salivary function was detected only in SGSCspheroid-implanted mice. The production of submandibular acini specific mucin increased in SGSCspheroid-implanted mice, compared with PBS control. More MIST1+ mature acinar cells were preserved in the SGSCspheroid-implanted group than in the PBS control group. Intriguingly, SGSCspheroid-implanted mice exhibited greater amelioration of tissue damage and preservation of KRT7+ terminally differentiated luminal ductal cells than SGSCmonolayer-implanted mice. The SGSCspheroid-implanted mice also showed less DNA damage and apoptotic cell death than the SGSCmonolayer-implanted mice at 2 weeks post-implantation. Additionally, a significant increase in Ki67+AQP5+ proliferative acinar cells was noted only in SGSCspheroid-implanted mice. Our results suggest that a thermoresponsive fiber-based scaffold could be of use to facilitate the production of function-enhanced SGSCspheroid cells and their subsequent retrieval and delivery to damaged salivary glands to alleviate radiation-induced apoptotic cell death and promote salivary gland regeneration.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - DoJin Choi
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Lee
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwajung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sujeong Ahn
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
7
|
Kim D, Lee SJ, Youn J, Hong H, Eom S, Kim DS. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids. Biofabrication 2021; 13. [PMID: 34030141 DOI: 10.1088/1758-5090/ac044c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Despite the potential of a nanofibrous (NF) microwell array as a permeable microwell array to improve the viability and functions of spheroids, thanks to the superior permeability to both gases and solutes, there have still been difficulties regarding the stable formation of spheroids in the NF microwell array due to the low aspect ratio (AR) and the large interspacing between microwells. This study proposes a nanofibrous oval-shaped microwell array, named the NOVA microwell array, with both a high AR and a high well density, enabling us to not only collect cells in the microwell with a high cell seeding efficiency, but also to generate multiple viable and functional spheroids in a uniform and stable manner. To realize a deep NOVA microwell array with a high aspect ratio (AR = 0.9) and a high well density (494 wells cm-2), we developed a matched-mold thermoforming process for the fabrication of both size- and AR-controllable NOVA microwell arrays with various interspacing between microwells while maintaining the porous nature of the NF membrane. The human hepatocellular carcinoma (HepG2) cell spheroids cultured on the deep NOVA microwell array not only had uniform size and shape, with a spheroid circularity of 0.80 ± 0.03 at a cell seeding efficiency of 94.29 ± 9.55%, but also exhibited enhanced viability with a small fraction of dead cells and promoted functionality with increased albumin secretion, compared with the conventional impermeable microwell array. The superior characteristics of the deep NOVA microwell array, i.e. a high AR, a high well density, and a high permeability, pave the way to the production of various viable and functional spheroids and even organoids in a scalable manner.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|