1
|
O'Connor TF, Chatterjee S, Lam J, de la Ossa DHP, Martinez-Peyrat L, Hoefnagel MH, Fisher AC. An examination of process models and model risk frameworks for pharmaceutical manufacturing. Int J Pharm X 2024; 8:100274. [PMID: 39206253 PMCID: PMC11350267 DOI: 10.1016/j.ijpx.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Process models are a growing tool for pharmaceutical manufacturing process design and control. The Industry 4.0 paradigm promises to increase the amount of data available to understand manufacturing processes. Tools such as Artificial Intelligence (AI) might accelerate process development and allow better predictions of process trajectories. Several examples of process improvements realized through the application of process models have been shown in lyophilization, chromatography, fluid bed drying, bioreactor control, continuous direct compression, and wet granulation. An important consideration of implementing a process model is determining the impact of the model on the quality of the product and the risks associated with model maintenance over the product lifecycle. Several regulatory documents address risk-based considerations for process models. This work discusses existing risk-based frameworks for model validation and lifecycle maintenance that could aid the adoption of process models in pharmaceutical manufacturing. Hypothetical case studies illustrate the implications of applying a model risk framework to facilitate model validation and lifecycle maintenance in the manufacture of pharmaceuticals and biological products.
Collapse
Affiliation(s)
- Thomas F. O'Connor
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States
| | - Sharmista Chatterjee
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States
| | - Johnny Lam
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, United States
| | | | - Leticia Martinez-Peyrat
- French National Agency for Medicines and Health Products Safety, F-93285, Saint-Denis, France
- Quality Innovation Group (QIG), European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel H.N. Hoefnagel
- Quality Innovation Group (QIG), European Medicines Agency (EMA), Amsterdam, the Netherlands
- CBG-MEB (Medicines Evaluation Board), Utrecht, the Netherlands
| | - Adam C. Fisher
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
3
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact Mater 2024; 37:153-171. [PMID: 38549769 PMCID: PMC10972802 DOI: 10.1016/j.bioactmat.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567730. [PMID: 38014258 PMCID: PMC10680807 DOI: 10.1101/2023.11.19.567730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function can be mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Ko E, Yoon T, Lee Y, Kim J, Park YB. ADSC secretome constrains NK cell activity by attenuating IL-2-mediated JAK-STAT and AKT signaling pathway via upregulation of CIS and DUSP4. Stem Cell Res Ther 2023; 14:329. [PMID: 37964351 PMCID: PMC10648656 DOI: 10.1186/s13287-023-03516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have immunomodulatory properties and therapeutic effects on autoimmune diseases through their secreted factors, referred to as the secretome. However, the specific key factors of the MSC secretome and their mechanisms of action in immune cells have not been fully determined. Most in vitro experiments are being performed using immune cells, but experiments using natural killer (NK) cells have been neglected, and a few studies using NK cells have shown discrepancies in results. NK cells are crucial elements of the immune system, and adjustment of their activity is essential for controlling various pathological conditions. The aim of this study was to elucidate the role of the adipose tissue-derived stem cell (ADSC) secretome on NK cell activity. METHODS To obtain the ADSC secretome, we cultured ADSCs in medium and concentrated the culture medium using tangential flow filtration (TFF) capsules. We assessed NK cell viability and proliferation using CCK-8 and CFSE assays, respectively. We analyzed the effects of the ADSC secretome on NK cell activity and pathway-related proteins using a combination of flow cytometry, ELISA, cytotoxicity assay, CD107a assay, western blotting, and quantitative real-time PCR. To identify the composition of the ADSC secretome, we performed LC-MS/MS profiling and bioinformatics analysis. To elucidate the molecular mechanisms involved, we used mRNA sequencing to profile the transcriptional expression of human blood NK cells. RESULTS The ADSC secretome was found to restrict IL-2-mediated effector function of NK cells while maintaining proliferative potency. This effect was achieved through the upregulation of the inhibitory receptor CD96, as well as downregulation of activating receptors and IL-2 receptor subunits IL-2Rα and IL-2Rγ. These changes were associated with attenuated JAK-STAT and AKT pathways in NK cells, which were achieved through the upregulation of cytokine-inducible SH2-containing protein (CIS, encoded by Cish) and dual specificity protein phosphatase 4 (DUSP4). Furthermore, proteomic analysis revealed twelve novel candidates associated with the immunomodulatory effects of MSCs. CONCLUSIONS Our findings reveal a detailed cellular outcome and regulatory mechanism of NK cell activity by the ADSC secretome and suggest a therapeutic tool for treating NK-mediated inflammatory and autoimmune diseases using the MSC secretome.
Collapse
Affiliation(s)
- Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongsun Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Klontzas ME, Koltsakis E, Kalarakis G, Trpkov K, Papathomas T, Sun N, Walch A, Karantanas AH, Tzortzakakis A. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia. Sci Rep 2023; 13:12594. [PMID: 37537362 PMCID: PMC10400617 DOI: 10.1038/s41598-023-39809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Differentiating benign renal oncocytic tumors and malignant renal cell carcinoma (RCC) on imaging and histopathology is a critical problem that presents an everyday clinical challenge. This manuscript aims to demonstrate a novel methodology integrating metabolomics with radiomics features (RF) to differentiate between benign oncocytic neoplasia and malignant renal tumors. For this purpose, thirty-three renal tumors (14 renal oncocytic tumors and 19 RCC) were prospectively collected and histopathologically characterised. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) was used to extract metabolomics data, while RF were extracted from CT scans of the same tumors. Statistical integration was used to generate multilevel network communities of -omics features. Metabolites and RF critical for the differentiation between the two groups (delta centrality > 0.1) were used for pathway enrichment analysis and machine learning classifier (XGboost) development. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) were used to assess classifier performance. Radiometabolomics analysis demonstrated differential network node configuration between benign and malignant renal tumors. Fourteen nodes (6 RF and 8 metabolites) were crucial in distinguishing between the two groups. The combined radiometabolomics model achieved an AUC of 86.4%, whereas metabolomics-only and radiomics-only classifiers achieved AUC of 72.7% and 68.2%, respectively. Analysis of significant metabolite nodes identified three distinct tumour clusters (malignant, benign, and mixed) and differentially enriched metabolic pathways. In conclusion, radiometabolomics integration has been presented as an approach to evaluate disease entities. In our case study, the method identified RF and metabolites important in differentiating between benign oncocytic neoplasia and malignant renal tumors, highlighting pathways differentially expressed between the two groups. Key metabolites and RF identified by radiometabolomics can be used to improve the identification and differentiation between renal neoplasms.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Koltsakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Georgios Kalarakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Diagnostic Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- University of Crete, School of Medicine, 71500, Heraklion, Greece
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Labs, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, C2:74, 14 186, Stockholm, Sweden.
| |
Collapse
|
7
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
8
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
9
|
Streeter BW, Brown ME, Shakya P, Park HJ, Qiu J, Xia Y, Davis ME. Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure. Biomaterials 2022; 283:121421. [DOI: 10.1016/j.biomaterials.2022.121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
|
10
|
Culberson AL, Chilmonczyk MA, Kottke PA, Bowles-Welch AC, Ghoshal D, Fedorov AG. Sample-to-analysis platform for rapid intracellular mass spectrometry from small numbers of cells. LAB ON A CHIP 2021; 21:4696-4706. [PMID: 34751694 PMCID: PMC8721559 DOI: 10.1039/d1lc00884f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Real-time, advanced diagnostics of the biochemical state within cells remains a significant challenge for research and development, production, and application of cell-based therapies. The fundamental biochemical processes and mechanisms of action of such advanced therapies are still largely unknown, including the critical quality attributes that correlate to therapeutic function, performance, and potency and the critical process parameters that impact quality throughout cell therapy manufacturing. An integrated microfluidic platform has been developed for in-line analysis of a small number of cells via direct infusion nano-electrospray ionization mass spectrometry. Central to this platform is a microfabricated cell processing device that prepares cells from limited sample volumes removed directly from cell culture systems. The sample-to-analysis workflow overcomes the labor intensive, time-consuming, and destructive nature of existing mass spectrometry approaches for analysis of cells. By providing rapid, high-throughput analyses of the intracellular state, this platform enables untargeted discovery of critical quality attributes and their real-time, in-process monitoring.
Collapse
Affiliation(s)
- Austin L Culberson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mason A Chilmonczyk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Peter A Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrei G Fedorov
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
12
|
Doron G, Temenoff JS. Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Adv Healthc Mater 2021; 10:e2100016. [PMID: 33930252 DOI: 10.1002/adhm.202100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical-scale manufacture of highly secretory MSC products.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
13
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
14
|
Lam ATL, Lee AP, Jayaraman P, Tan KY, Raghothaman D, Lim HL, Cheng H, Zhou L, Tan AHM, Reuveny S, Oh S. Multiomics analyses of cytokines, genes, miRNA, and regulatory networks in human mesenchymal stem cells expanded in stirred microcarrier-spinner cultures. Stem Cell Res 2021; 53:102272. [PMID: 33676128 DOI: 10.1016/j.scr.2021.102272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great clinical interest as a form of allogenic therapy due to their excellent regenerative and immunomodulatory effects for various therapeutic indications. Stirred suspension bioreactors using microcarriers (MC) have been used for large-scale production of MSCs compared to planar cultivation systems. Previously, we have demonstrated that expansion of MSCs in MC-spinner cultures improved chondrogenic, osteogenic, and cell migration potentials as compared to monolayer-static cultures. In this study, we sought to address this by analyzing global gene expression patterns, miRNA profiles and secretome under both monolayer-static and MC-spinner cultures in serum-free medium at different growth phases. The datasets revealed differential expression patterns that correlated with potentially improved MSC properties in cells from MC-spinner cultures compared to those of monolayer-static cultures. Transcriptome analysis identified a unique expression signature for cells from MC-spinner cultures, which correlated well with miRNA expression, and cytokine secretion involved in key MSC functions. Importantly, MC-spinner cultures and conditioned medium showed increased expression of factors that possibly enhance pathways of extracellular matrix dynamics, cellular metabolism, differentiation potential, immunoregulatory function, and wound healing. This systematic analysis provides insights for the efficient optimization of stem cell bioprocessing and infers that MC-based bioprocess manufacturing could improve post-expansion cellular properties for stem cell therapies.
Collapse
Affiliation(s)
- Alan Tin-Lun Lam
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Alison P Lee
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Premkumar Jayaraman
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kah Yong Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deepak Raghothaman
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hsueh Lee Lim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - He Cheng
- MiRXES, 2 Tukang Innovation Grove, JTC MedTech Hub, Singapore
| | - Lihan Zhou
- MiRXES, 2 Tukang Innovation Grove, JTC MedTech Hub, Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steve Oh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
15
|
Dick JM. Water as a reactant in the differential expression of proteins in cancer. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education School of Geosciences and Info‐Physics Central South University Changsha China
| |
Collapse
|
16
|
Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Anal Chem 2020; 93:478-499. [DOI: 10.1021/acs.analchem.0c04414] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Li Y, Bouza M, Wu C, Guo H, Huang D, Doron G, Temenoff JS, Stecenko AA, Wang ZL, Fernández FM. Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nat Commun 2020; 11:5625. [PMID: 33159052 PMCID: PMC7648103 DOI: 10.1038/s41467-020-19444-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023] Open
Abstract
The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro-cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.
Collapse
Affiliation(s)
- Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Changsheng Wu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hengyu Guo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gilad Doron
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Arlene A Stecenko
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|