1
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
2
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
3
|
Leitner K, Motheramgari K, Borth N, Marx N. Nanopore Cas9-targeted sequencing enables accurate and simultaneous identification of transgene integration sites, their structure and epigenetic status in recombinant Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:2403-2418. [PMID: 36938677 DOI: 10.1002/bit.28382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
The integration of a transgene expression construct into the host genome is the initial step for the generation of recombinant cell lines used for biopharmaceutical production. The stability and level of recombinant gene expression in Chinese hamster ovary (CHO) can be correlated to the copy number, its integration site as well as the epigenetic context of the transgene vector. Also, undesired integration events, such as concatemers, truncated, and inverted vector repeats, are impacting the stability of recombinant cell lines. Thus, to characterize cell clones and to isolate the most promising candidates, it is crucial to obtain information on the site of integration, the structure of integrated sequence and the epigenetic status. Current sequencing techniques allow to gather this information separately but do not offer a comprehensive and simultaneous resolution. In this study, we present a fast and robust nanopore Cas9-targeted sequencing (nCats) pipeline to identify integration sites, the composition of the integrated sequence as well as its DNA methylation status in CHO cells that can be obtained simultaneously from the same sequencing run. A Cas9-enrichment step during library preparation enables targeted and directional nanopore sequencing with up to 724× median on-target coverage and up to 153 kb long reads. The data generated by nCats provides sensitive, detailed, and correct information on the transgene integration sites and the expression vector structure, which could only be partly produced by traditional Targeted Locus Amplification-seq data. Moreover, with nCats the DNA methylation status can be analyzed from the same raw data without prior DNA amplification.
Collapse
Affiliation(s)
- Klaus Leitner
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Nicole Borth
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicolas Marx
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Hashemi N, Tabatabaee SH, Shams F, Rahimpour A, Kazemi B, Rajabibazl M, Ranjbari J. Overexpression of SIRT6 alleviates apoptosis and enhances cell viability and monoclonal antibody expression in CHO-K1 cells. Mol Biol Rep 2023:10.1007/s11033-023-08483-5. [PMID: 37286776 DOI: 10.1007/s11033-023-08483-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells are the most predominantly utilized host for the production of monoclonal antibodies (mAbs) and other complex glycoproteins. A major challenge in the process of CHO cell culture is the occurrence of cell death following different stressful conditions, which hinders the production yield. Engineering genes involved in pathways related to cell death is a remarkable strategy to delay apoptosis, improve cell viability and enhance productivity. SIRT6 is a stress-responsive protein that regulates DNA repair, maintains genome integrity, and is critical for longevity and cell survival in organisms. METHODS AND RESULTS In this study, SIRT6 was stably overexpressed in CHO-K1 cells and the impact of its expression on apoptosis related gene expression profile, viability, apoptosis, and mAb productivity was investigated. While a significant increase was observed in Bcl-2 mRNA level, caspase-3 and Bax mRNA levels were decreased in the SIRT6 engineered cells compared to the parental CHO-K1 cells. Moreover, improved cell viability and decreased rate of apoptotic progression was observed in a SIRT6-derived clone in comparision to the CHO-K1 cells during 5 days of batch culture. anti-CD52 IgG1 mAb titers were improved up to 1.7- and 2.8-fold in SIRT6-derived clone during transient and stable expression, respectively. CONCLUSIONS This study indicates the positive effects of SIRT6 overexpression on cell viability and anti-CD52 IgG1 mAb expression in CHO-K1 cells. Further studies are needed to examine the potential of SIRT6-engineered host cells for the production of recombinant biotherapeutics in industrial settings.
Collapse
Affiliation(s)
- Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hassan Tabatabaee
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dahodwala H, Amenyah SD, Nicoletti S, Henry M, Lees-Murdock DJ, Sharfstein ST. Evaluation of site-specific methylation of the CMV promoter and its role in CHO cell productivity of a recombinant monoclonal antibody. Antib Ther 2022; 5:121-129. [PMID: 35719211 PMCID: PMC9199181 DOI: 10.1093/abt/tbac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
We previously demonstrated that increased monoclonal antibody productivity in dihydrofolate reductase (DHFR)-amplified CHO cells correlates with phosphorylated transcription factor-cytomegalovirus (CMV) promoter interactions. In this article, we extend the characterization to include CMV promoter methylation and its influence on NFκB and CREB1 transcription factor binding to the CMV promoter in two families of DHFR-amplified CHO cell lines. CMV promoter methylation was determined using bisulfite sequencing. To overcome Sanger-sequencing limitations due to high CG bias and multiple transgenes copies, pyrosequencing was used to determine the frequency of methylated cytosines in regions proximal to and containing the NFκB and CREB1 transcription-factor consensus binding sites. Chromatin immunoprecipitation was performed to interrogate transcription factor–DNA interactions. Antibodies to CREB1 and NFκB were used to immunoprecipitate formaldehyde-crosslinked protein-DNA fractions, followed by reverse transcription quantitative real-time polymerase chain reaction to quantitate the number of copies of CMV-promoter DNA bound to the various transcription factors. The relative unmethylated fraction at the CREB1 and NFκB consensus binding sites determined by pyrosequencing was correlated with transcription factor binding as determined by chromatin immunoprecipitation. Azacytidine treatment reduced methylation in all treated samples, though not at all methylation sites, while increasing transcription. Distinct promoter methylation patterns arise upon clonal selection in different families of cell lines. In both cell line families, increased methylation was observed upon amplification. In one family, the NFκB binding-site methylation was accompanied by increased CREB1 interaction with the promoter. In the other cell line family, lower methylation frequency at the NFκB consensus binding site was accompanied by more NFκB recruitment to the promoter region.
Collapse
Affiliation(s)
- Hussain Dahodwala
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Sophia D Amenyah
- School of Biomedical Sciences, Ulster University, Coleraine, Londonderry, Northern Ireland, UK
| | - Sarah Nicoletti
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York USA
| | - Matthew Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | - Diane J Lees-Murdock
- School of Biomedical Sciences, Ulster University, Coleraine, Londonderry, Northern Ireland, UK
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York USA
| |
Collapse
|
6
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
7
|
Chang M, Kumar A, Kumar S, Huhn S, Timp W, Betenbaugh M, Du Z. Epigenetic Comparison of CHO Hosts and Clones Reveals Divergent Methylation and Transcription Patterns Across Lineages. Biotechnol Bioeng 2022; 119:1062-1076. [PMID: 35028935 DOI: 10.1002/bit.28036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/26/2021] [Indexed: 11/11/2022]
Abstract
In this study, we examined DNA methylation and transcription profiles of recombinant clones derived from two different Chinese hamster ovary hosts. We found striking epigenetic differences between the clones, with global hypomethylation in the host 1 clones that produce bispecific antibody with higher productivity and complex assembly efficiency. Whereas the methylation patterns were found mostly inherited from the host, the host 1 clones exhibited continued demethylation reflected by the hypomethylation of newly emerged differential methylation regions (DMRs) even at the clone development stage. Several interconnected biological functions and pathways including cell adhesion, regulation of ion transport, and cholesterol biosynthesis were significantly altered between the clones at the RNA expression level and contained DMR in the promoter and/or gene-body of the transcripts, suggesting epigenetic regulation. Indeed, expression changes of epigenetic regulators were observed including writers (Dnmt1, Setdb1), readers (Mecp2), and erasers (Tet3, Kdm3a, Kdm1b/5c) involved in CpG methylation, histone methylation and heterochromatin maintenance. In addition, we identified putative transcription factors that may be readers or effectors of the epigenetic regulation in these clones. By combining transcriptomics with DNA methylation data, we identified potential processes and factors that may contribute to the variability in cell physiology between different production hosts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiping Chang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Amit Kumar
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Steven Huhn
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Zhimei Du
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
8
|
Kim D, Yoon C, Lee GM. Small molecule epigenetic modulators for enhancing recombinant antibody production in CHO cell cultures. Biotechnol Bioeng 2021; 119:820-831. [PMID: 34961935 DOI: 10.1002/bit.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
Small molecule epigenetic modulators that modify epigenetic states in cells are useful tools for regulating gene expression by inducing chromatin remodeling. To identify small molecule epigenetic modulators that enhance recombinant protein expression in CHO cells, we examined eight histone deacetylase inhibitors (iHDACs) and six DNA methyltransferase inhibitors as chemical additives in recombinant CHO (rCHO) cell cultures. Among these, a benzamide-based iHDAC, CI994, was the most effective in increasing monoclonal antibody (mAb) production. Despite suppressing cell growth, the addition of CI994 to mAb-expressing GSR cell cultures at 10 μM resulted in a 2.3-fold increase in maximum mAb concentration due to a 3.0-fold increase in specific mAb productivity (q mAb ). CI994 increased mAb mRNA levels and histone H3 acetylation in GSR cells, and ChIP-qPCR analysis revealed that CI994 significantly increased the histone H3 acetylation level at the CMV promoter driving mAb gene expression, indicating that chromatin remodeling in the promoter region results in enhanced mAb gene transcription and q mAb . Similar beneficial effects of CI994 on mAb production were observed in mAb-expressing CS13-1.00 cells. Collectively, our findings indicate that CI994 increases mAb production in rCHO cell cultures by chromatin remodeling resulting from acetylation of histones in the mAb gene promoter. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dongil Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chansik Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
9
|
Nmagu D, Singh SK, Lee KH. Creation of monoclonal antibody expressing CHO cell lines grown with sodium butyrate and characterization of resulting antibody glycosylation. Methods Enzymol 2021; 660:267-295. [PMID: 34742393 DOI: 10.1016/bs.mie.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes.
Collapse
Affiliation(s)
- Douglas Nmagu
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sumit K Singh
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
10
|
Marx N, Dhiman H, Schmieder V, Freire CM, Nguyen LN, Klanert G, Borth N. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metab Eng 2021; 66:268-282. [PMID: 33965614 DOI: 10.1016/j.ymben.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.
Collapse
Affiliation(s)
- Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Heena Dhiman
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Valerie Schmieder
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Ly Ngoc Nguyen
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
11
|
Eisenhut P, Mebrahtu A, Moradi Barzadd M, Thalén N, Klanert G, Weinguny M, Sandegren A, Su C, Hatton D, Borth N, Rockberg J. Systematic use of synthetic 5'-UTR RNA structures to tune protein translation improves yield and quality of complex proteins in mammalian cell factories. Nucleic Acids Res 2020; 48:e119. [PMID: 33051690 PMCID: PMC7672427 DOI: 10.1093/nar/gkaa847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
Predictably regulating protein expression levels to improve recombinant protein production has become an important tool, but is still rarely applied to engineer mammalian cells. We therefore sought to set-up an easy-to-implement toolbox to facilitate fast and reliable regulation of protein expression in mammalian cells by introducing defined RNA hairpins, termed 'regulation elements (RgE)', in the 5'-untranslated region (UTR) to impact translation efficiency. RgEs varying in thermodynamic stability, GC-content and position were added to the 5'-UTR of a fluorescent reporter gene. Predictable translation dosage over two orders of magnitude in mammalian cell lines of hamster and human origin was confirmed by flow cytometry. Tuning heavy chain expression of an IgG with the RgEs to various levels eventually resulted in up to 3.5-fold increased titers and fewer IgG aggregates and fragments in CHO cells. Co-expression of a therapeutic Arylsulfatase-A with RgE-tuned levels of the required helper factor SUMF1 demonstrated that the maximum specific sulfatase activity was already attained at lower SUMF1 expression levels, while specific production rates steadily decreased with increasing helper expression. In summary, we show that defined 5'-UTR RNA-structures represent a valid tool to systematically tune protein expression levels in mammalian cells and eventually help to optimize recombinant protein expression.
Collapse
Affiliation(s)
- Peter Eisenhut
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Aman Mebrahtu
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Mona Moradi Barzadd
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Niklas Thalén
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Gerald Klanert
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Marcus Weinguny
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Anna Sandegren
- Affibody Medical AB, Scheeles väg 2, SE-171 65 Solna, Sweden
| | - Chao Su
- SOBI AB, Tomtebodavägen 23A, Stockholm, Sweden
| | - Diane Hatton
- AstraZeneca, Biopharmaceutical Development, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Nicole Borth
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Johan Rockberg
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Weinguny M, Eisenhut P, Klanert G, Virgolini N, Marx N, Jonsson A, Ivansson D, Lövgren A, Borth N. Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities. Biotechnol Bioeng 2020; 117:3435-3447. [PMID: 32662873 PMCID: PMC7818401 DOI: 10.1002/bit.27493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
Abstract
Chinese hamster ovary (CHO) cells produce a large share of today's biopharmaceuticals. Still, the generation of satisfactory producer cell lines is a tedious undertaking. Recently, it was found that CHO cells, when exposed to new environmental conditions, modify their epigenome, suggesting that cells adapt their gene expression pattern to handle new challenges. The major aim of the present study was to employ artificially induced, random changes in the DNA-methylation pattern of CHO cells to diversify cell populations and consequently increase the finding of cell lines with improved cellular characteristics. To achieve this, DNA methyltransferases and/or the ten-eleven translocation enzymes were downregulated by RNA interference over a time span of ∼16 days. Methylation analysis of the resulting cell pools revealed that the knockdown of DNA methyltransferases was highly effective in randomly demethylating the genome. The same approach, when applied to stable CHO producer cells resulted in (a) an increased productivity diversity in the cell population, and (b) a higher number of outliers within the population, which resulted in higher specific productivity and titer in the sorted cells. These findings suggest that epigenetics play a previously underestimated, but actually important role in defining the overall cellular behavior of production clones.
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Peter Eisenhut
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gerald Klanert
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria
| | | | - Nicolas Marx
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | | | - Nicole Borth
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
13
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|