1
|
Lali N, Tsiatsiani L, Elffrink W, Kokke B, Satzer P, Dirksen E, Eppink M, Jungbauer A. An inert tracer: The binding site of a fluorescent dye on the antibody and its effects on Protein A chromatography. J Chromatogr A 2024; 1728:464995. [PMID: 38805895 DOI: 10.1016/j.chroma.2024.464995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Fluorescently labeled antibodies are widely used to visualize the adsorption process in protein chromatography using confocal laser scanning microscopy (CLSM), but also as a tracer for determination of residence time distribution (RTD) in continuous chromatography. It is assumed that the labeled protein is inert and representative of the unlabeled antibody, ignoring the fact that labeling with a fluorescent dye can change the characteristics of the original molecule. It became evident that the fluorescently labeled antibody has a higher affinity toward protein A resins such as MabSelect Sure. This can be due to slight differences in hydrophobicity and net charge, which are caused by the addition of the fluorescent dye. However, this difference is eliminated when using high salt concentrations in the adsorption studies. In this work, the site occupancy of two labeled antibodies, MAb1 (IgG1 subclass) and MAb2 (IgG2 subclass) conjugated with the fluorescent dye Alexa Fluor™ 488 was elucidated by intact mass spectrometry (MS) and peptide mapping LC-MS/MS, employing a sequential cleavage with Endoproteinase Lys-C and trypsin and in parallel with chymotrypsin alone. It was shown that the main binding site for the dye was a specific lysine in the heavy chains of the MAb1 and MAb2 molecules, in positions 188 and 189 respectively. Other lysine residues distributed throughout the protein sequence were labeled to a lot lesser extent. The labeled antibody had a slightly different affinity to MabSelect Sure although its primary binding site (to Protein A) was not affected by labeling, despite the secondary region responsible for binding to the protein A was partly labeled. Overall, the fluorescent-labeled antibodies are a good compromise as an inert tracer in residence time distribution and chromatography studies because they are much cheaper than isotope-labeled antibodies; However, the differences between the labeled and unlabeled antibodies should be considered.
Collapse
Affiliation(s)
- Narges Lali
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Bas Kokke
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Peter Satzer
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eef Dirksen
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Michel Eppink
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Alois Jungbauer
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Crowley L, Cashen P, Noverraz M, Lobedann M, Nestola P. Reviewing the process intensification landscape through the introduction of a novel, multitiered classification for downstream processing. Biotechnol Bioeng 2024; 121:877-893. [PMID: 38214109 DOI: 10.1002/bit.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
A demand for process intensification in biomanufacturing has increased over the past decade due to the ever-expanding market for biopharmaceuticals. This is largely driven by factors such as a surge in biosimilars as patents expire, an aging population, and a rise in chronic diseases. With these market demands, pressure upon biomanufacturers to produce quality products with rapid turnaround escalates proportionally. Process intensification in biomanufacturing has been well received and accepted across industry based on the demonstration of its benefits of improved productivity and efficiency, while also reducing the cost of goods. However, while these benefits have been shown empirically, the challenges of adopting process intensification into industry remain, from smaller independent start-up to big pharma. Traditionally, moving from batch to a process intensification scheme has been viewed as an "all or nothing" approach involving continuous bioprocessing, in which the factors of complexity and significant capital costs hinder its adoption. In addition, the literature is crowded with a variety of terms used to describe process intensification (continuous, periodic counter-current, connected, intensified, steady-state, etc.). Often, these terms are used inappropriately or as synonyms, which generates confusion in the field. Through a detailed review of current state-of-the-art systems, consumables, and process intensification case studies, we herein propose a defined approach in the implementation of downstream process intensification through a standardized nomenclature and viewing it as distinct independent levels. These can function separately as intensified single-unit operations or be built upon by integration with other process steps allowing for simple, incremental, cost-effective implementation of process intensification in the manufacturing of biopharmaceuticals.
Collapse
Affiliation(s)
- Louis Crowley
- Sartorius Stedim North America Inc, Bohemia, New York, USA
| | - Paul Cashen
- Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | | | | | | |
Collapse
|
3
|
Feng H, Dunn ZD, Kargupta R, Desai J, Phuangthong C, Venkata T, Appiah-Amponsah E, Patel B. Pioneering Just-in-Time (JIT) Strategy for Accelerating Raman Method Development and Implementation for Biologic Continuous Manufacturing. Anal Chem 2024. [PMID: 38321842 DOI: 10.1021/acs.analchem.3c05628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Raman spectroscopy is a popular process analytical technology (PAT) tool that has been increasingly used to monitor and control the monoclonal antibody (mAb) manufacturing process. Although it allows the characterization of a variety of quality attributes by developing chemometric models, a large quantity of representative data is required, and hence, the model development process can be time-consuming. In recent years, the pharmaceutical industry has been expediting new drug development in order to achieve faster delivery of life-changing drugs to patients. The shortened development timelines have impacted the Raman application, as less time is allowed for data collection. To address this problem, an innovative Just-in-Time (JIT) strategy is proposed with the goal of reducing the time needed for Raman model development and ensuring its implementation. To demonstrate its capabilities, a proof-of-concept study was performed by applying the JIT strategy to a biologic continuous process for producing monoclonal antibody products. Raman spectroscopy and online two-dimensional liquid chromatography (2D-LC) were integrated as a PAT analyzer system. Raman models of antibody titer and aggregate percentage were calibrated by chemometric modeling in real-time. The models were also updated in real-time using new data collected during process monitoring. Initial Raman models with adequate performance were established using data collected from two lab-scale cell culture batches and subsequently updated using one scale-up batch. The JIT strategy is capable of accelerating Raman method development to monitor and guide the expedited biologics process development.
Collapse
Affiliation(s)
- Hanzhou Feng
- Data Rich Measurements, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zachary D Dunn
- Data Rich Measurements, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Roli Kargupta
- Biologic Process Development, Pharmaceutical Process Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jay Desai
- Data Rich Measurements, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Chelsea Phuangthong
- Biologic Process Development, Pharmaceutical Process Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tayi Venkata
- Biologic Process Development, Pharmaceutical Process Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Emmanuel Appiah-Amponsah
- Data Rich Measurements, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bhumit Patel
- Data Rich Measurements, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Fan Y, Sun YN, Qiao LZ, Mao RQ, Tang SY, Shi C, Yao SJ, Lin DQ. Evaluation of dynamic control of continuous capture with periodic counter-current chromatography under feedstock variations. J Chromatogr A 2024; 1713:464528. [PMID: 38029658 DOI: 10.1016/j.chroma.2023.464528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Multi-column periodic counter-current chromatography is a promising technology for continuous antibody capture. However, dynamic changes due to disturbances and drifts pose some potential risks for continuous processes during long-term operation. In this study, a model-based approach was used to describe the changes in breakthrough curves with feedstock variations in target proteins and impurities. The performances of continuous capture of three-column periodic counter-current chromatography under ΔUV dynamic control were systematically evaluated with modeling to assess the risks under different feedstock variations. As the concentration of target protein decreased rapidly, the protein might not breakthrough from the first column, resulting in the failure of ΔUV control. Small reductions in the concentrations of target proteins or impurities would cause protein losses, which could be predicted by the modeling. The combination of target protein and impurity variations showed complicated effects on the process performance of continuous capture. A contour map was proposed to describe the comprehensive impacts under different situations, and nonoperation areas could be identified due to control failure or protein loss. With the model-based approach, after the model parameters are estimated from the breakthrough curves, it can rapidly predict the process stability under dynamic control and assess the risks under feedstock variations or UV signal drifts. In conclusion, the model-based approach is a powerful tool for continuous process evaluation under dynamic changes and would be useful for establishing a new real-time dynamic control strategy.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yan-Na Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang-Zhi Qiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo-Que Mao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Pareek A, Buddhiraju VS, Masampally VS, Premraj K, Runkana V. Comparison of multi-column chromatography configurations through model-based optimization. Biotechnol Prog 2023; 39:e3376. [PMID: 37454372 DOI: 10.1002/btpr.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Integrated continuous bioprocessing has been identified as the next important phase of evolution in biopharmaceutical manufacturing. Multiple platform technologies to enable continuous processing are being developed. Multi-column counter-current chromatography is a step in this direction to provide increased productivity and capacity utilization to capture biomolecules like monoclonal antibodies (mAbs) present in the reactor harvest and remove impurities. Model-based optimization of two prevalent multi-column designs, 3-column and 4-column periodic counter-current chromatography (PCC) was carried out for different concentrations of mAbs in the feed, durations of cleaning-in-place and equilibration protocols. The multi-objective optimization problem comprising three performance measures, namely, product yield, productivity, and capacity utilization was solved using the Radial basis function optimization technique. The superficial velocities during load, wash, and elute operations, along with durations of distinct stages present in the multi-column operations were considered as decision variables. Optimization results without the constraint on number of wash volumes showed that 3-Column PCC performs better than 4-Column PCC. For example, at a feed concentration of 1.2 mg/mL, productivity, yield and capacity utilization, respectively, were 0.024 mg/mL.s, 0.94, and 0.94 for 3-Column PCC and 0.017 mg/mL.s, 0.87, and 0.83 for 4-column PCC. Similar trends were observed at higher feed concentrations also. However, when the constraint on number of wash volumes is included, 4-Column PCC was found to result in consistent productivity and product yield under different operating conditions but at the expense of reduced capacity utilization.
Collapse
Affiliation(s)
- Aditya Pareek
- TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
| | | | | | - Karundev Premraj
- TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
| | - Venkataramana Runkana
- TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
| |
Collapse
|
6
|
Tang SY, Yuan YH, Chen YC, Yao SJ, Wang Y, Lin DQ. Physics-informed neural networks to solve lumped kinetic model for chromatography process. J Chromatogr A 2023; 1708:464346. [PMID: 37716084 DOI: 10.1016/j.chroma.2023.464346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Numerical method is widely used for solving the mechanistic models of chromatography process, but it is time-consuming and hard to response in real-time. Physics-informed neural network (PINN) as an emerging technology combines the structure of neural network with physics laws, and is getting noticed for solving physics problems with a balanced accuracy and calculation speed. In this research, a proof-of-concept study was carried out to apply PINN to chromatography process simulation. The PINN model structure was designed for the lumped kinetic model (LKM) with all LKM parameters. The PINN structure, training data and model complexity were optimized, and an optimal mode was obtained by adopting an in-series structure with a nonuniform training data set focusing on the breakthrough transition region. A PINN for LKM (LKM-PINN) consisting of four neural networks, 12 layers and 606 neurons was then used for the simulation of breakthrough curves of chromatography processes. The LKM parameters were estimated with two breakthrough curves and used to infer the breakthrough curves at different residence times, loading concentrations and column sizes. The results were comparable to that obtained with numerical methods. With the same raw data and constraints, the average fitting error for LKM-PINN model was 0.075, which was 0.081 for numerical method. With the same initial guess, the LKM-PINN model took 160 s to complete the fitting, while the numerical method took 7 to 72 min, depending on the fitting settings. The fitting speed of LKM-PINN model was further improved to 30 s with random initial guess. Thus, the LKM-PINN model developed in this study is capable to be applied to real-time simulation for digital twin.
Collapse
Affiliation(s)
- Si-Yuan Tang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Manufacturing Science and Technology, Global Manufacturing, WuXi Biologics, Wuxi 214000, China
| | - Yun-Hao Yuan
- Manufacturing Science and Technology, Global Manufacturing, WuXi Biologics, Wuxi 214000, China
| | - Yu-Cheng Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- Manufacturing Science and Technology, Global Manufacturing, WuXi Biologics, Wuxi 214000, China
| | - Dong-Qiang Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Sun YN, Chen WW, Yao SJ, Lin DQ. Model-assisted process development, characterization and design of continuous chromatography for antibody separation. J Chromatogr A 2023; 1707:464302. [PMID: 37607430 DOI: 10.1016/j.chroma.2023.464302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Continuous manufacturing in monoclonal antibody production has generated increased interest due to its consistent quality, high productivity, high equipment utilization, and low cost. One of the major challenges in realizing continuous biological manufacturing lies in implementing continuous chromatography. Given the complex operation mode and various operation parameters, it is challenging to develop a continuous process. Due to the process parameters being mainly determined by the breakthrough curves and elution behaviors, chromatographic modeling has gradually been used to assist in process development and characterization. Model-assisted approaches could realize multi-parameter interaction investigation and multi-objective optimization by integrating continuous process models. These approaches could reduce time and resource consumption while achieving a comprehensive and systematic understanding of the process. This paper reviews the application of modeling tools in continuous chromatography process development, characterization and design. Model-assisted process development approaches for continuous capture and polishing steps are introduced and summarized. The challenges and potential of model-assisted process characterization are discussed, emphasizing the need for further research on the design space determination strategy and parameter robustness analysis method. Additionally, some model applications for process design were highlighted to promote the establishment of the process optimization and process simulation platform.
Collapse
Affiliation(s)
- Yan-Na Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wu-Wei Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Yang Z, Paes BCMF, Fulber JPC, Tran MY, Farnós O, Kamen AA. Development of an Integrated Continuous Manufacturing Process for the rVSV-Vectored SARS-CoV-2 Candidate Vaccine. Vaccines (Basel) 2023; 11:vaccines11040841. [PMID: 37112753 PMCID: PMC10143285 DOI: 10.3390/vaccines11040841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The administration of viral vectored vaccines remains one of the most effective ways to respond to the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. However, pre-existing immunity to the viral vector hinders its potency, resulting in a limited choice of viral vectors. Moreover, the basic batch mode of manufacturing vectored vaccines does not allow one to cost-effectively meet the global demand for billions of doses per year. To date, the exposure of humans to VSV infection has been limited. Therefore, a recombinant vesicular stomatitis virus (rVSV), which expresses the spike protein of SARS-CoV-2, was selected as the vector. To determine the operating upstream process conditions for the most effective production of an rVSV-SARS-CoV-2 candidate vaccine, a set of critical process parameters was evaluated in an Ambr 250 modular system, whereas in the downstream process, a streamlined process that included DNase treatment, clarification, and a membrane-based anion exchange chromatography was developed. The design of the experiment was performed with the aim to obtain the optimal conditions for the chromatography step. Additionally, a continuous mode manufacturing process integrating upstream and downstream steps was evaluated. rVSV-SARS-CoV-2 was continuously harvested from the perfusion bioreactor and purified by membrane chromatography in three columns that were operated sequentially under a counter-current mode. Compared with the batch mode, the continuous mode of operation had a 2.55-fold increase in space-time yield and a reduction in the processing time by half. The integrated continuous manufacturing process provides a reference for the efficient production of other viral vectored vaccines.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Julia Puppin Chaves Fulber
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michelle Yen Tran
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Omar Farnós
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amine A Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
9
|
Milne JJ. Scale-Up of Protein Purification: Downstream Processing Issues. Methods Mol Biol 2023; 2699:61-75. [PMID: 37646994 DOI: 10.1007/978-1-0716-3362-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Large-scale chromatography operations continue to occupy the central position in the overall strategy for downstream processing and purification of therapeutic protein products for human use. As the biopharmaceutical industry looks forward to embracing new therapeutic modalities such as viral vector-mediated gene therapy, it is becoming evident that chromatographic separations will be also be crucial for success in that discipline. The current industry focus on cell culture intensification strategies that can result in increased process efficiency and lower cost of goods is presenting challenges to the robustness and economics of chromatography processes. To ensure robust and reproducible commercial manufacturing strategies, there is always a mandate to increase the scale of chromatography unit operations that are typically developed and optimized in small-scale development trials. This chapter discusses the key factors in typical chromatography operations that need to be carefully considered and modeled during the process scale-up phase in order to maintain the purity, yield, and quality of a product purified at smaller scales.
Collapse
Affiliation(s)
- John Joseph Milne
- National Institute for Bioprocessing Research and Training (NIBRT), Blackrock, Dublin, Ireland.
| |
Collapse
|
10
|
Shi C, Chen XJ, Jiao B, Liu P, Jing SY, Zhong XZ, Chen R, Gong W, Lin DQ. Model-assisted process design for better evaluation and scaling up of continuous downstream bioprocessing. J Chromatogr A 2022; 1683:463532. [DOI: 10.1016/j.chroma.2022.463532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
|
11
|
Effect of solution condition on the binding behaviors of monoclonal antibody and fusion protein therapeutics in Protein A chromatography. J Chromatogr A 2022; 1686:463652. [DOI: 10.1016/j.chroma.2022.463652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
12
|
Ding C, Ardeshna H, Gillespie C, Ierapetritou M. Process Design of a Fully Integrated Continuous Biopharmaceutical Process using Economic and Ecological Impact Assessment. Biotechnol Bioeng 2022; 119:3567-3583. [DOI: 10.1002/bit.28234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chaoying Ding
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716US
| | - Hiren Ardeshna
- Manufacturing Science and Technology, Biopharm and Steriles, GlaxoSmithKlinePhiladelphiaPA19112US
| | | | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716US
| |
Collapse
|
13
|
Sun YN, Shi C, Zhong XZ, Chen XJ, Chen R, Zhang QL, Yao SJ, Jungbauer A, Lin DQ. Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography. J Chromatogr A 2022; 1677:463311. [PMID: 35843202 DOI: 10.1016/j.chroma.2022.463311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Multi-column counter-current chromatography is an advanced technology used for continuous capture processes to improve process productivity, resin capacity utilization and product consistency. However, process development is difficult due to process complexity. In this work, some general and convenient guidances for three-column periodic counter-current chromatography (3C-PCC) were developed. Boundaries and distributions of operating windows of 3C-PCC processes were clarified by model-based predictions. Interactive effects of feed concentration (c0), resin properties (qmax and De), recovery and regeneration times (tRR) were evaluated over a wide range for maximum productivity (Pmax). Furthermore, variation of Pmax was analyzed considering the constraint factors (capacity utilization target and flow rate limitation). The plateau value of Pmax was determined by qmax and tRR. The operating conditions for Pmax were controlled by qmax, tRR and c0 interactively, and a critical concentration existed to judge whether the operating conditions of Pmax under constraints. Based on the comprehensive understanding on 3C-PCC processes, a model-free strategy was proposed for process development. The optimal operating conditions could be determined based on a set of breakthrough curves, which was used to optimize process performance and screen resins. The approach proposed was validated using monoclonal antibody (mAb) capture with a 3C-PCC system under various mAb and feed concentrations. The results demonstrated that a thorough model-based process understanding on multi-column counter-current chromatography is important and could improve process development and establish a model-free strategy for more convenient applications.
Collapse
Affiliation(s)
- Yan-Na Sun
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ce Shi
- Shanghai Engineering Research Center of Anti-Tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xue-Zhao Zhong
- Shanghai Engineering Research Center of Anti-Tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xu-Jun Chen
- Shanghai Engineering Research Center of Anti-Tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ran Chen
- Shanghai Engineering Research Center of Anti-Tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Qi-Lei Zhang
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shan-Jing Yao
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dong-Qiang Lin
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
14
|
Parameter-by-parameter method for steric mass action model of ion exchange chromatography: Theoretical considerations and experimental verification. J Chromatogr A 2022; 1680:463418. [PMID: 36001908 DOI: 10.1016/j.chroma.2022.463418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Ion exchange chromatography (IEC) is one of the most widely-used techniques for protein separation and has been characterized by mechanistic models. However, the time-consuming and cumbersome model calibration hinders the application of mechanistic models for process development. A new methodology called "parameter-by-parameter method (PbP)" was proposed with mechanistic derivations of the steric mass action (SMA) model of IEC. The protocol includes four steps: (1) first linear regression (LR1) for characteristic charge; (2) second linear regression (LR2) for equilibrium coefficient; (3) linear approximation (LA) for shielding factor; (4) inverse method (IM) for kinetic coefficient. Four SMA parameters could be one-by-one determined in sequence, reducing the number of unknown parameters per species from four to one, and predicting almost consistent retention. Numerical single-component experiments were investigated firstly, and the PbP method showed excellent agreement between experiments and simulations. The effects of loadings on the PbP and Yamamoto methods were compared. It was found that the PbP method had higher accuracy and robustness than the Yamamoto method. Moreover, a five-experiment strategy was suggested to implement the PbP method, which is straightforward to reduce the cost of calibration experiments. Finally, a real-world multi-component separation was challenged and further confirmed the feasibility of the PbP method. In general, the proposed method can not only reliably estimate the SMA parameters with comprehensive physical understanding but also accurately predict retention over a wide range of loading conditions.
Collapse
|
15
|
Chen R, Chen XJ, Shi C, Jiao B, Shi Y, Yao B, Lin DQ, Gong W, Hsu S. Converting a mAb downstream process from batch to continuous using process modeling and process analytical technology. Biotechnol J 2022; 17:e2100351. [PMID: 35908168 DOI: 10.1002/biot.202100351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
Abstract
The biopharmaceutical market is driving the revolution from traditional batch processes to continuous manufacturing for higher productivity and lower costs. In this work, a batch mAb downstream process has been converted into an integrated continuous process with the combination of multiple techniques. For process intensification, two batch mode unit operations (protein A capture chromatography, ultrafiltration/diafiltration) are converted into continuous ones; For continuity, surge tanks were used between adjacent steps, and level signals were used to trigger process start or stop, forming a holistic continuous process. For process automation, manual operations (e.g., pH and conductivity adjustment) were changed into automatic operation and load mass was controlled with process analytical technology (PAT). A model-based simulation was applied to estimate the loading conditions for the continuous capture process, resulting in 21% resin capacity utilization and 28% productivity improvement as compared to the batch process. Automatic load mass control of cation exchange chromatography was achieved through a customized in-line protein quantity monitoring system, with a difference of less than 1.3% as compared to off-line analysis. Total process time was shortened from 4 days (batch process) to less than 24 hours using the continuous downstream process with the overall productivity of 23.8 g mAb /day for the bench-scale system. Comparable yield and quality data were obtained in three test runs, indicating a successful conversion from a batch process to a continuous process. The insight of this work could be a reference to other similar situations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ran Chen
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xu-Jun Chen
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Biao Jiao
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ye Shi
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Bin Yao
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wei Gong
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Simon Hsu
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| |
Collapse
|
16
|
Schwarz H, Fons JG, Isaksson M, Scheffel J, Andersson N, Andersson A, Castan A, Solbrand A, Hober S, Nilsson B, Chotteau V. Integrated continuous biomanufacturing on pilot scale for acid-sensitive monoclonal antibodies. Biotechnol Bioeng 2022; 119:2152-2166. [PMID: 35470430 PMCID: PMC9541590 DOI: 10.1002/bit.28120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
In this study, we demonstrated the first, to our knowledge, integrated continuous bioprocess (ICB) designed for the production of acid-sensitive monoclonal antibodies, prone to aggregate at low pH, on pilot scale. A high cell density perfusion culture, stably maintained at 100 x 106 cells/mL, was integrated with the downstream process, consisting of a capture step with the recently developed Protein A ligand, ZCa ; a solvent/detergent-based virus inactivation; and two ion exchange chromatography steps. The use of a mild pH in the downstream process makes this ICB suitable for the purification of acid-sensitive monoclonal antibodies. Integration and automation of the downstream process were achieved using the Orbit software, and the same equipment and control system were used in initial small-scale trials and the pilot-scale downstream process. High recovery yields of around 90% and a productivity close to 1 g purified antibody/L/day were achieved, with a stable glycosylation pattern and efficient removal of impurities, such as host cell proteins and DNA. Finally, negligible levels of antibody aggregates were detected owing to the mild conditions used throughout the process. The present work paves the way for future industrial-scale integrated continuous biomanufacturing of all types of antibodies, regardless of acid stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hubert Schwarz
- Dept. of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Joaquín Gomis Fons
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Madelène Isaksson
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Julia Scheffel
- Dept. of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | | | - Andreas Andersson
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Andreas Castan
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Anita Solbrand
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Sophia Hober
- Dept. of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Bernt Nilsson
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Veronique Chotteau
- Dept. of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| |
Collapse
|
17
|
Ding C, Ierapetritou M. A novel framework of surrogate-based feasibility analysis for establishing design space of twin-column continuous chromatography. Int J Pharm 2021; 609:121161. [PMID: 34624445 DOI: 10.1016/j.ijpharm.2021.121161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Multi-column periodic counter-current chromatography (PCC) has attracted wide attention for the primary capture for the purpose of achieving continuous biomanufacturing. Consequently, determining the design space of the continuous capture process is very important to facilitate process understanding and improving product quality. In this work, we proposed a novel approach to identify the design space of continuous chromatography to balance the computational complexity and model predictions. Specifically, surrogate-based feasibility analysis with adaptive sampling is applied to establish the design space of twin-column CaptureSMB process. The surrogate model is constructed based on the developed mechanistic model for the identification of the design space. The effects of process variables (including interconnected loading time, interconnected flowrate, and batch flowrate) on the design space are comprehensively examined based on an active set strategy. Besides, essential factors like recovery-regeneration time and constraints of column performance parameters (yield, productivity, and capacity utilization) are thoroughly investigated. The impact of design variables such as column length is also studied.
Collapse
Affiliation(s)
- Chaoying Ding
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|