1
|
Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y, Liu B. Structural basis for transcription activation by the nitrate-responsive regulator NarL. Nucleic Acids Res 2024; 52:1471-1482. [PMID: 38197271 PMCID: PMC10853779 DOI: 10.1093/nar/gkad1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lina He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei JiangXia Laboratory, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
2
|
Zulkifly NAH, Selas Castiñeiras T, Overton TW. Optimisation of recombinant TNFα production in Escherichia coli using GFP fusions and flow cytometry. Front Bioeng Biotechnol 2023; 11:1171823. [PMID: 37600304 PMCID: PMC10433901 DOI: 10.3389/fbioe.2023.1171823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Escherichia coli is commonly used industrially to manufacture recombinant proteins for biopharmaceutical applications, as well as in academic and industrial settings for R&D purposes. Optimisation of recombinant protein production remains problematic as many proteins are difficult to make, and process conditions must be optimised for each individual protein. An approach to accelerate process development is the use of a green fluorescent protein (GFP) fusions, which can be used to rapidly and simply measure the quantity and folding state of the protein of interest. In this study, we used GFP fusions to optimise production of recombinant human protein tumour necrosis factor (rhTNFα) using a T7 expression system. Flow cytometry was used to measure fluorescence and cell viability on a single cell level to determine culture heterogeneity. Fluorescence measurements were found to be comparable to data generated by subcellular fractionation and SDS-PAGE, a far more time-intensive technique. We compared production of rhTNFα-GFP with that of GFP alone to determine the impact of rhTNFα on expression levels. Optimised shakeflask conditions were then transferred to fed-batch high cell density bioreactor cultures. Finally, the expression of GFP from a paraBAD expression vector was compared to the T7 system. We highlight the utility of GFP fusions and flow cytometry for rapid process development.
Collapse
Affiliation(s)
- Nurul Asma Hasliza Zulkifly
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Birmingham, United Kingdom
| | - Tania Selas Castiñeiras
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Birmingham, United Kingdom
- Cobra Biologics, Keele, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Li S, Müller S. Ecological forces dictate microbial community assembly processes in bioreactor systems. Curr Opin Biotechnol 2023; 81:102917. [PMID: 36931023 DOI: 10.1016/j.copbio.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
Microbial communities are indispensable for future biotechnology to produce valuable platform chemicals and reduce the exploitation of fossil resources. Yet, the stability of microbial communities in classical continuous reactor setups is best brief or non-existent. This is due to ecological forces such as stochastic and deterministic properties of communities that contribute to rapid changes in structure and function to varying degrees. The review highlights the differences between these two properties, provides tools for their estimation, and gives an outlook on overcoming instabilities of microbial communities in biotechnological reactor systems.
Collapse
Affiliation(s)
- Shuang Li
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
4
|
New vectors for urea-inducible recombinant protein production. N Biotechnol 2022; 72:89-96. [PMID: 36273806 DOI: 10.1016/j.nbt.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
We have developed a novel urea-inducible recombinant protein production system by exploiting the Proteus mirabilis urease ureR-ureD promoter region and the ureR AraC-family transcriptional regulator. Experiments using the expression of β-galactosidase and green fluorescent protein (GFP) showed that promoter activity is tightly regulated and that varying the concentration of urea can give up to 100-fold induction. Production of proteins of biopharmaceutical interest has been demonstrated, including human growth hormone (hGH), a single chain antibody fragment (scFv) against interleukin-1β and a potential Neisserial vaccine candidate (BamAENm). Expression levels can be fine-tuned by temperature and different urea concentrations, and can be induced with readily available garden fertilisers and even urine. As urea is an inexpensive, stable inducer, a urea-induced expression system has the potential to considerably reduce the costs of large-scale recombinant protein production.
Collapse
|