1
|
Shastry S, Barbieri E, Minzoni A, Chu W, Johnson S, Stoops M, Pancorbo J, Gilleskie G, Ritola K, Crapanzano MS, Daniele MA, Menegatti S. Serotype-agnostic affinity purification of adeno-associated virus (AAV) via peptide-functionalized chromatographic resins. J Chromatogr A 2024; 1734:465320. [PMID: 39217737 DOI: 10.1016/j.chroma.2024.465320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Adeno-associated viruses (AAVs) have emerged as a prominent family of vectors for gene delivery, providing therapeutic options to diseases once deemed incurable. At the same time, they necessitate efficient and affordable purification methods that can be platformed to serve all AAV serotypes. Current chromatographic tools, while affording high product purity, fail to bind certain serotypes, provide limited yield and lifetime, and impose harsh elution conditions that can compromise the vector's activity and safety. Addressing these challenges, this work demonstrates the application of new peptide ligands as the first serotype-agnostic technology for AAV purification by affinity chromatography. Our study reveals a pH-dependent affinity interaction: AAV2, AAV3, AAV6, AAV9, and AAVrh.10 are effectively captured at neutral pH, while binding AAV1, AAV5, AAV7, and AAV8 is stronger in a slightly acidic environment. The elution of bound AAVs was achieved using magnesium chloride at neutral pH for all serotypes, consistently affording capsid yields above 50% and genome yields above 80%, together with a >100-fold reduction in host cell proteins and nucleic acids. In particular, peptide ligand A10 exhibited remarkable binding capacity (> 1014 vp per mL of resin) and purification performance for all AAV serotypes, demonstrating broad applicability for gene therapy manufacturing. Finally, this work introduces novel alkaline-stable variants of A10 and demonstrates their use as the first affinity ligands capable of performing multiple cycles of AAV2, AAV8, and AAV9 purification with intermediate caustic cleaning without loss of capacity or product quality. Collectively, these results demonstrate the promise of this technology to further the impact and affordability of gene therapy.
Collapse
Affiliation(s)
- Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Stephanie Johnson
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Mark Stoops
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Kimberly Ritola
- Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | | | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA.
| |
Collapse
|
2
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Shi W, Zhang TY, Fang CY, Zhang SQ, Li KB, Zhang XB, Han DM. Transforming waste into valuables: Preparation and evaluation of dual-ligand hydrophobic charge-induction chromatography using two poor performing ligands. J Chromatogr A 2024; 1726:464975. [PMID: 38735118 DOI: 10.1016/j.chroma.2024.464975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.
Collapse
Affiliation(s)
- Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China; Taizhou Research Institute of Bio-Medical and Chemical Industry CO., LTD, Jiaojiang 318000, China
| | - Tian-Yi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Chao-Ying Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Si-Qi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Xiao-Bin Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
4
|
Curry E, Muir G, Qu J, Kis Z, Hulley M, Brown A. Engineering an Escherichia coli based in vivo mRNA manufacturing platform. Biotechnol Bioeng 2024; 121:1912-1926. [PMID: 38419526 DOI: 10.1002/bit.28684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Synthetic mRNA is currently produced in standardized in vitro transcription systems. However, this one-size-fits-all approach has associated drawbacks in supply chain shortages, high reagent costs, complex product-related impurity profiles, and limited design options for molecule-specific optimization of product yield and quality. Herein, we describe for the first time development of an in vivo mRNA manufacturing platform, utilizing an Escherichia coli cell chassis. Coordinated mRNA, DNA, cell and media engineering, primarily focussed on disrupting interactions between synthetic mRNA molecules and host cell RNA degradation machinery, increased product yields >40-fold compared to standard "unengineered" E. coli expression systems. Mechanistic dissection of cell factory performance showed that product mRNA accumulation levels approached theoretical limits, accounting for ~30% of intracellular total RNA mass, and that this was achieved via host-cell's reallocating biosynthetic capacity away from endogenous RNA and cell biomass generation activities. We demonstrate that varying sized functional mRNA molecules can be produced in this system and subsequently purified. Accordingly, this study introduces a new mRNA production technology, expanding the solution space available for mRNA manufacturing.
Collapse
Affiliation(s)
- Edward Curry
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - George Muir
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Adam Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Sharma R, Gupta S, Rathore AS. Novel purification platform based on multimodal preparative scale separation of mAb fragments and aggregates. J Chromatogr A 2024; 1721:464806. [PMID: 38518514 DOI: 10.1016/j.chroma.2024.464806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India; Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
6
|
LeBarre JP, Chu W, Altern SH, Kocot AJ, Bhandari D, Barbieri E, Sly J, Crapanzano M, Cramer SM, Phillips M, Roush D, Carbonell R, Boi C, Menegatti S. Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode. J Chromatogr A 2024; 1720:464772. [PMID: 38452560 DOI: 10.1016/j.chroma.2024.464772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.
Collapse
Affiliation(s)
- Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Scott H Altern
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Andrew J Kocot
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Dipendra Bhandari
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Eduardo Barbieri
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Jae Sly
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Michael Crapanzano
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | | | - David Roush
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, Roush Biopharma Panacea, 20 Squire Terrace, Colts Neck, NJ, 07033, USA
| | - Ruben Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; Department of Civil, Chemical Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Tian Y, Wang X, Shao D, Zhao W, Chen R, Huang Q. Establishment and evaluation of detection methods for process-specific residual host cell protein and residual host cell DNA in biological preparation. Cell Biochem Funct 2024; 42:e3986. [PMID: 38504442 DOI: 10.1002/cbf.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.
Collapse
Affiliation(s)
- Yixiao Tian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xinyue Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Renan Chen
- Shaanxi Province Cancer Hospital, Xi'an, Shaanxi, China
| | - Qingsheng Huang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Barbieri E, Mollica GN, Moore BD, Sripada SA, Shastry S, Kilgore RE, Loudermilk CM, Whitacre ZH, Kilgour KM, Wuestenhagen E, Aldinger A, Graalfs H, Rammo O, Schulte MM, Johnson TF, Daniele MA, Menegatti S. Peptide ligands targeting the vesicular stomatitis virus G (VSV-G) protein for the affinity purification of lentivirus particles. Biotechnol Bioeng 2024; 121:618-639. [PMID: 37947118 DOI: 10.1002/bit.28594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.
Collapse
Affiliation(s)
- Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Casee M Loudermilk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary H Whitacre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Kilgour
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, London, UK
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Zhang K, Barbieri E, LeBarre J, Rameez S, Mostafa S, Menegatti S. Peptonics: A new family of cell-protecting surfactants for the recombinant expression of therapeutic proteins in mammalian cell cultures. Biotechnol J 2024; 19:e2300261. [PMID: 37844203 DOI: 10.1002/biot.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Polymer surfactants are key components of cell culture media as they prevent mechanical damage during fermentation in stirred bioreactors. Among cell-protecting surfactants, Pluronics are widely utilized in biomanufacturing to ensure high cell viability and productivity. Monodispersity of monomer sequence and length is critical for the effectiveness of Pluronics-since minor deviations can damage the cells-but is challenging to achieve due to the stochastic nature of polymerization. Responding to this challenge, this study introduces Peptonics, a novel family of peptide and peptoid surfactants whose monomer composition and sequence are designed to achieve high cell viability and productivity at a fraction of chain length and cost of Pluronics. A designed ensemble of Peptonics was initially characterized via light scattering and tensiometry to select sequences whose phase behavior and tensioactivity align with those of Pluronics. Selected sequences were evaluated as cell-protecting surfactants using Chinese hamster ovary (CHO) cells expressing therapeutic monoclonal antibodies (mAb). Peptonics IH-T1010, ih-T1010, and ih-T1020 afforded high cell density (up to 3 × 107 cells mL-1 ) and viability (up to 95% within 10 days of culture), while reducing the accumulation of ammonia (a toxic metabolite) by ≈10% compared to Pluronic F-68. Improved cell viability afforded high mAb titer (up to 5.5 mg mL-1 ) and extended the production window beyond 14 days; notably, Peptonic IH-T1020 decreased mAb fragmentation and aggregation ≈5%, and lowered the titer of host cell proteins by 16% compared to Pluronic F-68. These features can improve significantly the purification of mAbs, thus increasing their availability at a lower cost to patients.
Collapse
Affiliation(s)
- Ka Zhang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- KBI Biopharma, Durham, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| | - Jacob LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
11
|
Chu W, Shastry S, Barbieri E, Prodromou R, Greback-Clarke P, Smith W, Moore B, Kilgore R, Cummings C, Pancorbo J, Gilleskie G, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates. Biotechnol Bioeng 2023; 120:2283-2300. [PMID: 37435968 PMCID: PMC10440015 DOI: 10.1002/bit.28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Greback-Clarke
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Will Smith
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher Cummings
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Kilgore R, Chu W, Bhandari D, Fischler D, Carbonell RG, Crapanzano M, Menegatti S. Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids. J Chromatogr A 2023; 1687:463701. [PMID: 36502645 DOI: 10.1016/j.chroma.2022.463701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the CH1-3 and CL chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Qmax ∼ 20 mg of Fab per mL of resin) and dissociation constant (KD = 2.16·10-6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC10%) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Dipendra Bhandari
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - David Fischler
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Michael Crapanzano
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
13
|
Schwaminger SP, Zimmermann I, Berensmeier S. Current research approaches in downstream processing of pharmaceutically relevant proteins. Curr Opin Biotechnol 2022; 77:102768. [PMID: 35930843 DOI: 10.1016/j.copbio.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Biopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently. The DSP currently accounts for the majority of production costs of pharmaceutically relevant proteins. This short review gathers essential research over the past 3 years that addresses novel solutions to overcome this bottleneck. The overview includes promising studies in the fields of chromatography, aqueous two-phase systems, precipitation, crystallization, magnetic separation, and filtration for the purification of pharmaceutically relevant proteins.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| | - Ines Zimmermann
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|