1
|
Jiang T, Wang G, Liu Y, Feng L, Wang M, Liu J, Chen Y, Ouyang L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B 2021; 11:355-372. [PMID: 33643817 PMCID: PMC7893124 DOI: 10.1016/j.apsb.2020.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC), which are well-known members of the cell surface receptor tyrosine kinase (RTK) family, are encoded by the neurotrophic receptor tyrosine kinase 1, 2 and 3 (NTRK1, NTRK2 and NTRK3) genes, respectively. TRKs can regulate cell proliferation, differentiation and even apoptosis through the RAS/MAPKs, PI3K/AKT and PLCγ pathways. Gene fusions involving NTRK act as oncogenic drivers of a broad diversity of adult and pediatric tumors, and TRKs have become promising antitumor targets. Therefore, achieving a comprehensive understanding of TRKs and relevant TRK inhibitors should be urgently pursued for the further development of novel TRK inhibitors for potential clinical applications. This review focuses on summarizing the biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts.
Collapse
Key Words
- AFAP1, actin filament-associated protein 1
- AML, acute myeloid leukemia
- ARHGEF2, Rho/Rac guanine nucleotide exchange factor 2
- BCAN, brevican
- BDNF, brain-derived neurotrophic factor
- BTBD1, BTB (POZ) domain containing 1
- CDK-2, cyclin-dependent kinase 2
- CR, complete response
- CRC, colorectal cancer
- CTCs, sequencing of circulating tumor cells
- DFG, Asp-Phe-Gly
- DOR, durable objective responses
- ETV6, ETS translocation variant 6
- EWG, electron-withdrawing group
- FDA, U.S. Food and Drug Administration
- FISH, fluorescence in situ hybridization
- GBM, glioblastoma multiforme
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, intrahepatic cholangiocarcinoma
- IG-C2, Ig-like C2 type I
- LMNA, lamin A/C
- MASC, mammary analogue secretory carcinoma
- MPRIP, myosin phosphatase Rho interacting protein
- NACC2, NACC family member 2
- NCCN, National Comprehensive Cancer Network
- NFASC, neurofascin
- NGF, nerve growth factor
- NGS, next-generation sequencing of tumor tissue
- NSCLC, non-small cell lung cancer
- NT3, neurotrophin-3
- NTRK fusion cancer
- NTRK, neurotrophic receptor tyrosine kinase
- Neurotrophic receptor tyrosine kinase fusions
- OAK, osteoarthritis of the knee
- ORR, overall response rate
- PAN3, poly(A) nuclease 3
- PPL, periplakin
- PROTAC proteolysis targeting chimera, QKI
- RABGTPase activating protein 1-like, RFWD2
- RTK, receptor tyrosine kinase
- SAR, structure–activity relationship
- SBC, secretory breast carcinoma
- SCYL3, SCY1 like pseudokinase 3
- SQSTM1, sequestosome 1
- Small-molecule inhibitor
- TFG, TRK-fused gene
- TP53, tumor protein P53
- TPM3, tropomyosin 3
- TPR, translocated promoter region
- TRIM24, tripartite motif containing 24
- TRK, tropomyosin receptor kinase
- Tropomyosin receptor kinase
- VCL, vinculin
- VEGFR2, vascular endothelial growth factor receptor 2
- quaking I protein, RABGAP1L
- ring finger and WD repeat domain 2, E3 ubiquitin protein ligase
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Zhu JN, Wang WK, Jin ZH, Wang QK, Zhao SY. Pyrrolo[3,4- c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Org Lett 2019; 21:5046-5050. [PMID: 31247786 DOI: 10.1021/acs.orglett.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of pyrrolo[3,4- c]pyrazole derivatives from readily available aldehyde hydrazones and maleimides via direct oxidative coupling under radical cascade reaction have been reported. This method offers satisfactory chemical yields and good functional group compatibility. Moreover, this practical approach is catalyzed by CuCl utilizing air as the oxidant and some control experiments were performed to elaborate the mechanism.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Ze-Hui Jin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Qian-Kun Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
3
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|