1
|
Stewart J, Shawon J, Ali MA, Williams B, Shahinuzzaman ADA, Rupa SA, Al-Adhami T, Jia R, Bourque C, Faddis R, Stone K, Sufian MA, Islam R, McShan AC, Rahman KM, Halim MA. Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay. J Pept Sci 2024; 30:e3553. [PMID: 38031661 DOI: 10.1002/psc.3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 μM, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 μM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.
Collapse
Affiliation(s)
- James Stewart
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Jakaria Shawon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Ackas Ali
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Blaise Williams
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - A D A Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Taha Al-Adhami
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ruoqing Jia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cole Bourque
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Ryan Faddis
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Kaylee Stone
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Md Abu Sufian
- School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Rajib Islam
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
2
|
BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The novel BIOPEP-UWM Virtual database is designed as a repository of peptide sequences whose bioactivity or taste information was the result of in silico predictions. It is a tool complementary to the existing BIOPEP-UWM database summarizing the results of experimental data on bioactive peptides. The layout and organization of the new database are identical to those of the existing BIOPEP-UWM database of bioactive peptides. The peptide data record includes the following information: name; sequence and function information (understood as information about the predicted target biomacromolecule); bibliographic data with the reference paper describing the peptide; additional information, including the peptide structure, annotated using chemical codes as well as the specification of the method used for bioactivity prediction; information about other activities discovered experimentally or predicted using computational methods; peptide taste (if available); and a database reference tab providing information about compound annotations in other databases (if available).
Collapse
|