1
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|
2
|
Li S, Xu N, Fang Q, Cheng X, Chen J, Liu P, Li L, Wang C, Liu W. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116831. [PMID: 37369334 DOI: 10.1016/j.jep.2023.116831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glehnia littoralis Fr. Schmidtex Miq. is a well-known perennial herb that is used in traditional medicine in China, Japan and Korea. G. littoralis has the effects of treating the lungs with heat, nourishing yin and blood, and acting as an expectorant. Traditional Chinese medicine (TCM) prescriptions containing G. littoralis have various clinical applications, such as clearing heat, relieving coughs, treating hepatic fibrosis, resolving phlegm, and treating esophagitis. AIM OF THE REVIEW This paper aims to provide a comprehensive and productive review of G. littoralis, mainly including traditional application, ethnopharmacology, chemical composition, pharmacological activities, and quality control. MATERIALS AND METHODS Literature search was conducted through the Web of Science, ScienceDirect, Springer Link, PubMed, Baidu Scholar, CNKI, and WanFang DATA by using the keywords "Glehnia littoralis", "Radix Glehniae", "Bei Shashen", "Clinical application", "Chemical composition", "Quality control" and "pharmacological action". In addition, information was collected from relevant ancient books, reviews, and documents (1980-2022). RESULTS G. littoralis is a traditional Chinese herbal medicine with great clinical value and rich resources. More than 186 components, including coumarins, lignans, polyacetylenes, organic acids, flavonoids, and terpenoids, have been isolated and identified from G. littoralis. The pharmacological activities of more than half of these chemicals are yet unknown. Polyacetylenes and coumarins are the most important bioactive compounds responsible for pharmacological activities, such as antiproliferative, anti-oxidation, anti-inflammatory, antibacterial, antitussive, immune regulation and analgesic. In this study, the progress in chemical analysis of G. littoralis, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (MS), and HPLC-MS, were summarized. CONCLUSION In this paper reviewed the previous literature regarding ethnopharmacological, phytochemical, pharmacological, and quality evaluation of the processing of G. littoralis was reviewed, providing potential reference information for future investigation and clinical applications. However, research on the relationship between chemical constituents and traditional uses of G. littoralis is lacking, and the comprehensive pharmacological effects and mechanisms of G. littoralis require further detailed exploration. In addition, an efficient method for chemical profiling is still unavailable to obtain potent bioactive markers for quality control. Perfect quality standards, which are also the basis for further drug development of G. littoralis, are urgently needed to ensure its quality and clinical application.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Nan Xu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Qinqin Fang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Li Li
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Changhong Wang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Wei Liu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Lai J, Li Y, Ran M, Huang Q, Huang F, Zhu L, Wu Y, Zou W, Xie X, Tang Y, Yang F, Wu A, Ge G, Wu J. Xanthotoxin, a novel inducer of platelet formation, promotes thrombocytopoiesis via IL-1R1 and MEK/ERK signaling. Biomed Pharmacother 2023; 163:114811. [PMID: 37156117 DOI: 10.1016/j.biopha.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. METHODS The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. RESULTS XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. CONCLUSION XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yueyue Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Linjie Zhu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Preclinical Pharmacokinetics and Bioavailability of Oxypeucedanin in Rats after Single Intravenous and Oral Administration. Molecules 2022; 27:molecules27113570. [PMID: 35684506 PMCID: PMC9182147 DOI: 10.3390/molecules27113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Oxypeucedanin, a furanocoumarin extracted from many traditional Chinese herbal medicines, has a variety of pharmacological effects. However, the independent pharmacokinetic characteristics and bioavailability of this compound remains elusive. In this study, a rapid, sensitive, and selective method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) was developed for evaluating the intravenous and oral pharmacokinetics of oxypeucedanin. After intravenous administration of oxypeucedanin (2.5, 5, and 10 mg/kg), and intragastric administration of oxypeucedanin (20 mg/kg), blood samples were collected periodically from the tail vein. The plasma concentration-time curves were plotted, and the pharmacokinetic parameters were calculated using a non-compartmental model analysis. After intravenous administration of oxypeucedanin (single dosing at 2.5, 5, and 10 mg/kg) to rats, the pharmacokinetics fit the linear kinetics characteristics, which showed that some parameters including average elimination half-life (T1/2Z of 0.61~0.66 h), mean residence time (MRT of 0.62~0.80 h), apparent volume of distribution (VZ of 4.98~7.50 L/kg), and systemic clearance (CLZ of 5.64~8.55 L/kg/h) are dose-independent and the area under concentration-time curve (AUC) increased in a dose-proportional manner. Single oral administration of oxypeucedanin (20 mg/kg) showed poor and slow absorption with the mean time to reach the peak concentration (Tmax) of 3.38 h, MRT of 5.86 h, T1/2Z of 2.94 h, and a mean absolute bioavailability of 10.26% in rats. These results provide critical information for a better understanding of the pharmacological effect of oxypeucedanin, which will facilitate its research and development.
Collapse
|
5
|
Łuczykowski K, Warmuzińska N, Bojko B. Current approaches to the analysis of bile and the determination of bile acids in various biological matrices as supportive tools to traditional diagnostic testing for liver dysfunction and biliary diseases. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Liang Y, Xie L, Liu K, Cao Y, Dai X, Wang X, Lu J, Zhang X, Li X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity. Phytother Res 2021; 35:6131-6147. [PMID: 34347307 DOI: 10.1002/ptr.7221] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022]
Abstract
Bergapten is a natural furocoumarin, also known as 5-methoxypsoralen, and its medicinal value has been paid more and more attention. By sorting out the pharmacological literature of bergapten, we found that bergapten has a wide range of pharmacological effects, including neuroprotection, organ protection, anticancer, antiinflammatory, antimicrobial, and antidiabetes effects. However,bergapten has complex impacts on the hepatic metabolic enzyme. Moreover, pharmacokinetic studies showed that bergapten has higher absolute bioavailability and can cross the blood-brain barrier and has a great potential for treating brain disease, but the mechanism needs further clarification to make greater use of its ability to treat brain diseases. Furthermore, the phototoxicity of bergapten combined with ultraviolet light has always been mentioned. In view of its wide range of pharmacological activities, bergapten is expected to be a potential drug candidate for the treatment of diabetes and diabetes-induced osteoporosis, epilepsy, Alzheimer's disease, depression, and cancer. However, further studies are needed to elucidate its molecular mechanisms and targets. The phototoxicity of bergapten as a side effect should be further avoided. On the other hand, the photoactivation of bergapten in the anticancer aspect can be better utilized.
Collapse
Affiliation(s)
- Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Mottaghipisheh J. Oxypeucedanin: Chemotaxonomy, Isolation, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081577. [PMID: 34451622 PMCID: PMC8401860 DOI: 10.3390/plants10081577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/10/2023]
Abstract
The present review comprehensively gathered phytochemical, bioactivity, and pharmacokinetic reports on a linear furanocoumarin, namely oxypeucedanin. Oxypeucedanin (OP), which structurally contains an epoxide ring, has been majorly isolated from ethyl acetate-soluble partitions of several genera, particularly Angelica, Ferulago, and Prangos of the Apiaceae family; and Citrus, belonging to the Rutaceae family. The methanolic extract of Angelica dahurica roots has been analytically characterized as the richest natural OP source. This naturally occurring secondary metabolite has been described to possess potent antiproliferative, cytotoxic, anti-influenza, and antiallergic activities, as assessed in preclinical studies. In order to explore potential drug candidates, oxypeucedanin, its derivatives, and semi-synthetically optimized analogues can be considered for the complementary assessments of biological assays.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Zhou Y, Meng D, Chen F, Wu Z, Wang B, Wang S, Geng P, Dai D, Zhou Q, Qiu W. Inhibitory Effect of Imperatorin on the Pharmacokinetics of Diazepam In Vitro and In Vivo. Front Pharmacol 2020; 11:01079. [PMID: 33041783 PMCID: PMC7525091 DOI: 10.3389/fphar.2020.01079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
Background Diazepam is a benzodiazepine drug used to treat anxiety, insomnia, and muscle spasms. Imperatorin is a phytochemical isolated from medicinal plants and is widely used in herbal medicine. The aim of this study was to investigate the interactions between imperatorin and diazepam in vitro and in vivo and to provide evidence-based guidance for the safe clinical use of the drug. Methods In vitro inhibition of imperatorin was assessed by incubating rat liver microsomes with diazepam to determine IC50 values and the type of inhibition. For in vivo assessment, six rats were pretreated with 50 mg/kg imperatorin for two weeks, six were administered saline, and a single dose of 10 mg/kg diazepam was administered orally to both groups 30 min after the administration of imperatorin. Results Imperatorin inhibited the in vitro metabolism of diazepam via the competitive mechanism of CYP450. The IC50 values of imperatorin to nordazepam and temazepam were 1.54 μM and 1.80 μM, respectively. The inhibitory constant values for temazepam and nordazepam were 1.24 μM and 1.29 μM, respectively. Long-term administration of imperatorin significantly increased the AUC(0-12h), AUC(0-∞), and Cmax of diazepam, while Vz/F and CLz/F were decreased significantly (P < 0.05). In turn, the AUC(0-12h), AUC(0-∞), and Cmax of nordazepam and temazepam decreased significantly, and Vz/F and CLz/F increased significantly (P < 0.05). Conclusions This study demonstrates that imperatorin inhibits the metabolism of diazepam both in vitro and in vivo. These results indicated that more attention should be paid when taking diazepam together with food or herbs containing IMP, although further investigation is still needed.
Collapse
Affiliation(s)
- Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China
| | - Deru Meng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China.,College of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China
| | - Zhengping Wu
- College of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Binglan Wang
- Department of Neurology, The People's Hospital of Longquan, Longquan, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China
| | - Dapeng Dai
- The Key laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China
| | - Weiwen Qiu
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China.,College of Chemistry and Bioengineering, Yichun University, Yichun, China.,Department of Neurology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| |
Collapse
|
9
|
Nasser MI, Zhu S, Hu H, Huang H, Guo M, Zhu P. Effects of imperatorin in the cardiovascular system and cancer. Biomed Pharmacother 2019; 120:109401. [PMID: 31622950 DOI: 10.1016/j.biopha.2019.109401] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with cancer survivors are at increased risk of cardiovascular disease(CVD). Cardio-oncology has developed as a new discipline with the advances in cancer treatment. There are many new challenges for the clinician and a new frontier for research and investigation. There is an urgent need for further study on the prevention of cardiovascular toxicity. Imperatorin (IMP) is a natural form of coumarin and extract from several plants with diver's pharmacokinetic effects, including antioxidant and anti-inflammatory properties. This review focus on the molecular mechanisms and pharmacological effects of Imperatorin maybe provide potential cancer and cardiovascular protection that targets IMP. Further studies are required to elucidate the entire spectrum of cytotoxic activities of these compounds to validate and expand their preclinical and clinical applications and to clarify the potential role of IMP.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Haiyan Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Minghui Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080).
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080).
| |
Collapse
|
10
|
Li B, Lu M, Chu Z, Lei S, Sun P, Xiong S, Chen S. Evaluation of pharmacokinetics, bioavailability and urinary excretion of scopolin and its metabolite scopoletin in Sprague Dawley rats by liquid chromatography–tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4678. [DOI: 10.1002/bmc.4678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou China
| | - Min Lu
- School of Medicine and Life SciencesUniversity of Jinan, Shandong Academy of Medical Sciences Jinan China
| | - Zixuan Chu
- School of Medicine and Life SciencesUniversity of Jinan, Shandong Academy of Medical Sciences Jinan China
| | - Shanshan Lei
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou China
| | - Peilu Sun
- Institute of Materia MedicaShandong Academy of Medical Sciences Jinan China
| | - Shan Xiong
- Institute of Materia MedicaShandong Academy of Medical Sciences Jinan China
- Key Laboratory for Biotech‐Drugs Ministry of Health Jinan China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou China
| |
Collapse
|
11
|
Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem Toxicol 2018; 122:163-171. [DOI: 10.1016/j.fct.2018.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022]
|
12
|
Ngo L, Tran P, Ham SH, Cho JH, Cho HY, Lee YB. Simultaneous determination of imperatorin and its metabolite xanthotoxol in rat plasma and urine by LC–MS/MS and its application to pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:30-38. [DOI: 10.1016/j.jchromb.2016.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
|
13
|
Shi X, Wang S, Qian Q, Zhou N, Qi P, Mu X, Wang Q. Herb–herb pharmacokinetic interaction between Glehniae radix and Ophiopogonis radix in rats using superimposed multiple product ion (SMPI) LC-HR-MS/MS. RSC Adv 2017. [DOI: 10.1039/c7ra02554h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The herb–herb pharmacokinetic interaction between Glehniae radix and Ophiopogonis radix in rats was studied using superimposed multiple product ion (SMPI) LC-HR-MS/MS.
Collapse
Affiliation(s)
- Xiaowei Shi
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Shuang Wang
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Qi Qian
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Na Zhou
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Pengcheng Qi
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Xiyan Mu
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Qiao Wang
- Department of Pharmaceutical Analysis
- School of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| |
Collapse
|
14
|
Zhi X, Zhang Z, Li R, Chang L, Jia P, Sheng N, Zhang L. Simultaneous determination and excretion study of six flavonoids in rat after oral administration ofFructus Sophoraeextract by liquid chromatography tandem mass spectrometry. ACTA CHROMATOGR 2016. [DOI: 10.1556/achrom.28.2016.1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem 2015; 186:133-8. [DOI: 10.1016/j.foodchem.2015.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 11/17/2022]
|
16
|
Validated LC-MS/MS Method for the Determination of Scopoletin in Rat Plasma and Its Application to Pharmacokinetic Studies. Molecules 2015; 20:18988-9001. [PMID: 26492227 PMCID: PMC6332412 DOI: 10.3390/molecules201018988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
A rapid, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed and validated for the quantification of scopoletin in rat plasma. After the addition of the internal standard xanthotoxin, plasma samples were pretreated by a simple one-step protein precipitation with acetonitrile-methanol (2:1, v/v). Chromatographic separation was achieved on a Diamonsil ODS chromatography column using gradient elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. The determination was performed by positive ion electrospray ionization in multiple reaction monitoring mode. The calibration curve was linear over the concentration range of 5-1000 ng/mL (r = 0.9996). The intra- and inter-day precision (RSD%) was less than 6.1%, and the accuracy (RE%) was from -3.0%-2.5%. This method was successfully applied to the pharmacokinetic research of scopoletin in rats after intravenous (5 mg/kg) or oral (5, 10 and 20 mg/kg) administration. The result showed that oral bioavailability with a dose of 5 mg/kg was 6.62% ± 1.72%, 10 mg/kg, 5.59% ± 1.16%, and 20 mg/kg, 5.65% ± 0.75%.
Collapse
|
17
|
Shi HL, Jia YW, Peng SL, Liao X, Ding LS, Liu YM. Metabolic study of Angelica dahurica extracts using a reusable liver microsomal nanobioreactor by liquid chromatography-mass spectrometry. Biomed Chromatogr 2015; 29:1514-1521. [PMID: 25753568 DOI: 10.1002/bmc.3451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/18/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
Abstract
Highly active and recoverable nanobioreactors prepared by immobilizing rat liver microsomes on magnetic nanoparticles (LMMNPs) were utilized in metabolic study of Angelica dahurica extracts. Five metabolites were detected in the incubation solution of the extracts and LMMNPs, which were identified by means of HPLC-MS as trans-imperatorin hydroxylate (M1), cis-imperatorin hydroxylate (M2), imperatorin epoxide (M3), trans-isoimperatorin hydroxylate (M1') and cis-isoimperatorin hydroxylate (speculated M2'). Compared with the metabolisms of imperatorin and isoimperatorin, it was found that the five metabolites were all transformed from these two major compounds present in the plant. Since no study on isoimperatorin metabolism by liver microsomal enzyme system has been reported so far, its metabolites (M1' and M3') were isolated by preparative HPLC for structure elucidation by (1) H-NMR and MS(2) analysis. M3' was identified as isoimperatorin epoxide, which is a new compound as far as its chemical structure is concerned. However, interestingly, M3' was not detected in the metabolism of the whole plant extract. In addition, a study with known chemical inhibitors on individual isozymes of the microsomal enzyme family revealed that CYP1A2 is involved in metabolisms of both isoimperatorin and imperatorin, and CYP3A4 only in that of isoimperatorin.
Collapse
Affiliation(s)
- Hai-Li Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Wei Jia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Lin Peng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Sheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi-Ming Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA
| |
Collapse
|
18
|
Chen TL, Zhang YB, Xu W, Kang TG, Yang XW. Biotransformation of isoimperatorin by rat liver microsomes and its quantification by LC–MS/MS method. Fitoterapia 2014; 93:88-97. [DOI: 10.1016/j.fitote.2013.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
|
19
|
Zhi X, Sheng N, Yuan L, Zhang Z, Jia P, Zhang X, Zhang L. Pharmacokinetics and excretion study of sophoricoside and its metabolite in rats by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:154-62. [DOI: 10.1016/j.jchromb.2013.11.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
|
20
|
Shi X, Liu M, Zhang M, Zhang K, Liu S, Qiao S, Shi R, Jiang X, Wang Q. Identification of in vitro and in vivo metabolites of isoimperatorin using liquid chromatography/mass spectrometry. Food Chem 2013; 141:357-65. [DOI: 10.1016/j.foodchem.2013.02.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 11/16/2012] [Accepted: 02/16/2013] [Indexed: 11/28/2022]
|
21
|
Identification of the absorbed constituents after oral administration of Yuanhu Zhitong prescription extract and its pharmacokinetic study by rapid resolution liquid chromatography/quadrupole time-of-flight. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 935:1-9. [DOI: 10.1016/j.jchromb.2013.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/21/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022]
|
22
|
Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques. Anal Bioanal Chem 2013; 405:6721-38. [DOI: 10.1007/s00216-013-7132-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/18/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
23
|
Gao F, Hu Y, Fang G, Yang G, Xu Z, Dou L, Chen Z, Fan G. Recent developments in the field of the determination of constituents of TCMs in body fluids of animals and human. J Pharm Biomed Anal 2013; 87:241-60. [PMID: 23642848 DOI: 10.1016/j.jpba.2013.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
Although traditional Chinese medicines (TCMs) play important role in drug discovery and human health, the actual value of TCMs has not been fully recognized worldwide due to its complex components and uncontrollable quality. For the modernization and globalization of TCMs, it is important to establish selective, sensitive and feasible analytical methods for determination and quantification of bioactive components of TCMs in body fluids primarily due to the low concentration, the complex nature of the biological matrices, and multi-components and their metabolites present in biological fluids. The present review summarizes the current extraction techniques, chromatographic separation and spectroscopic (especially mass spectrometric) analysis methods and new trends on the analysis of bioactive components and metabolites of TCMs in biological fluids. In addition, the importance of establishment of pharmacokinetics and bioavailability profiles and simultaneous determination of multi-active components in TCMs is discussed to provide proper examples of analytical methods for pharmacological and clinical studies of TCMs.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No. 325 Guohe Road, Shanghai 200433, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chang YX, Zhang QH, Li J, Zhang L, Guo XR, He J, Zhang P, Ma L, Deng YR, Zhang BL, Gao XM. Simultaneous determination of scopoletin, psoralen, bergapten, xanthotoxin, columbianetin acetate, imperatorin, osthole and isoimperatorin in rat plasma by LC–MS/MS for pharmacokinetic studies following oral administration of Radix Angelicae Pubescentis extract. J Pharm Biomed Anal 2013; 77:71-5. [DOI: 10.1016/j.jpba.2012.12.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 11/28/2022]
|
25
|
Lili W, Yehong S, Qi Y, Yan H, Jinhui Z, Yan L, Cheng G. In vitro permeability analysis, pharmacokinetic and brain distribution study in mice of imperatorin, isoimperatorin and cnidilin in Radix Angelicae Dahuricae. Fitoterapia 2013; 85:144-53. [DOI: 10.1016/j.fitote.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/06/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
26
|
Wang L, Lu W, Shen Q, Wang S, Zhou H, Yu L, Wang S, Jiang H, He L, Zeng S. Simultaneous determination of imperatorin and its 2 metabolites in dog plasma by using liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2012; 70:640-6. [DOI: 10.1016/j.jpba.2012.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/07/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
27
|
Zhu H, Ren Y, Sun Y, Chang L, Cao L, Xu H, Zhang L. Determination of cnidilin and its two metabolites in rat bile and stool after oral administration by HPLC/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2012; 27:527-34. [DOI: 10.1002/bmc.2827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yanping Ren
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| | - Yingguang Sun
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| | - Lu Chang
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| | - Huijin Xu
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy; Hebei Medical University; Shijiazhuang; 050017; China
| |
Collapse
|