1
|
Chen B, Yan Q, Li D, Xie J. Degradation mechanism and development of detection technologies of ATP-related compounds in aquatic products: recent advances and remaining challenges. Crit Rev Food Sci Nutr 2023; 65:101-122. [PMID: 37855450 DOI: 10.1080/10408398.2023.2267690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques. The degradation mechanisms discussed include mainly degradation pathways, endogenous enzymes, and microbial mechanisms of action. Microbial activity is the main reason for the degradation of IMP and related products during the mid to late storage of aquatic products, mainly through the related enzymes produced by microorganisms. Further elucidation of the degradation mechanisms of ATP-related compounds provides new ideas for quality control techniques in raw aquatic products during storage. The development of new technologies for the detection of ATP-related compounds has become a significant area of research. And, biosensors further improve the efficiency and accuracy of detection and have potential application prospects. The development of biosensor back-end modalities (test strips, fluorescent probes, and artificial intelligence) has accelerated the practical application of biosensors for the detection of ATP-related compounds.
Collapse
Affiliation(s)
- Bohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
2
|
Chua SMH, Wizrah MSI, Luo Z, Lim BYJ, Kappler U, Kobe B, Fraser JA. Structural features of Cryptococcus neoformans bifunctional GAR/AIR synthetase may present novel antifungal drug targets. J Biol Chem 2021; 297:101091. [PMID: 34416230 PMCID: PMC8449271 DOI: 10.1016/j.jbc.2021.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.
Collapse
Affiliation(s)
- Sheena M H Chua
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bryan Y J Lim
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
3
|
Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review. Mikrochim Acta 2019; 186:749. [DOI: 10.1007/s00604-019-3842-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
4
|
Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, Zhang E, Chen X, Ascherio A, Schwarzschild MA. Higher urate in
LRRK2
mutation carriers resistant to Parkinson disease. Ann Neurol 2019; 85:593-599. [DOI: 10.1002/ana.25436] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Rachit Bakshi
- Department of NeurologyMassachusetts General Hospital
- Harvard Medical School
| | - Eric A. Macklin
- Harvard Medical School
- Biostatistics Center, Department of MedicineMassachusetts General Hospital
| | - Robert Logan
- Department of NeurologyMassachusetts General Hospital
| | | | - Ning Xia
- Department of NeurologyMassachusetts General Hospital
| | | | - Ellen Zhang
- Department of NeurologyMassachusetts General Hospital
| | - Xiqun Chen
- Department of NeurologyMassachusetts General Hospital
- Harvard Medical School
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, T. H. Chan School of Public HealthHarvard University Boston MA
| | | |
Collapse
|
5
|
Aguilar-Lozano A, Baier S, Grove R, Shu J, Giraud D, Leiferman A, Mercer KE, Cui J, Badger TM, Adamec J, Andres A, Zempleni J. Concentrations of Purine Metabolites Are Elevated in Fluids from Adults and Infants and in Livers from Mice Fed Diets Depleted of Bovine Milk Exosomes and their RNA Cargos. J Nutr 2018; 148:1886-1894. [PMID: 30517726 PMCID: PMC6280001 DOI: 10.1093/jn/nxy223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Background Humans and mice absorb bovine milk exosomes and their RNA cargos. Objectives The objectives of this study were to determine whether milk exosome- and RNA-depleted (ERD) and exosome- and RNA-sufficient (ERS) diets alter the concentrations of purine metabolites in mouse livers, and to determine whether diets depleted of bovine milk alter the plasma concentration and urine excretion of purine metabolites in adults and infants, respectively. Methods C57BL/6 mice were fed ERD (providing 2% of the microRNA cargos compared with ERS) and ERS diets starting at age 3 wk; livers were collected at age 7 wk. Plasma and 24-h urine samples were collected from healthy adults who consumed (DCs) or avoided (DAs) dairy products. Spot urine samples were collected from healthy infants fed human milk (HM), milk formula (MF), or soy formula (SF) at age 3 mo. Purine metabolites were analyzed in liver, plasma, and urine; mRNAs and microRNAs were analyzed in the livers of female mice. Results We found that 9 hepatic purine metabolites in ERD-fed mice were 1.76 ± 0.43 times the concentrations in ERS-fed mice (P < 0.05). Plasma concentrations and urine excretion of purine metabolites in DAs was ≤1.62 ± 0.45 times the concentrations in DCs (P < 0.05). The excretion of 13 purine metabolites in urine from SF infants was ≤175 ± 39 times the excretion in HM and MF infants (P < 0.05). mRNA expression of 5'-nucleotidase, cytosolic IIIB, and adenosine deaminase in mice fed ERD was 0.64 ± 0.52 and 0.60 ± 0.28 times the expression in mice fed ERS, respectively. Conclusion Diets depleted of bovine-milk exosomes and RNA cargos caused increases in hepatic purine metabolites in mice, and in plasma and urine from human adults and infants, compared with exosome-sufficient controls. These findings are important, because purines play a role in intermediary metabolism and cell signaling.
Collapse
Affiliation(s)
- Ana Aguilar-Lozano
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Scott Baier
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ryan Grove
- Departments of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE
| | - Jiang Shu
- Departments of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE
| | - David Giraud
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Amy Leiferman
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Juan Cui
- Departments of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE
| | - Thomas M Badger
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jiri Adamec
- Departments of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Janos Zempleni
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE,Address correspondence to JZ (e-mail: )
| |
Collapse
|
6
|
Dissociation between urate and blood pressure in mice and in people with early Parkinson's disease. EBioMedicine 2018; 37:259-268. [PMID: 30415890 PMCID: PMC6284456 DOI: 10.1016/j.ebiom.2018.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
Abstract
Background Epidemiological, laboratory and clinical studies have established an association between elevated urate and high blood pressure (BP). However, the inference of causality remains controversial. A naturally occurring antioxidant, urate may also be neuroprotective, and urate-elevating treatment with its precursor inosine is currently under clinical development as a potential disease-modifying strategy for Parkinson's disease (PD). Methods Our study takes advantage of a recently completed phase II trial evaluating oral inosine in de novo non-disabling early PD with no major cardiovascular and nephrological conditions, and of three lines of genetically engineered mice: urate oxidase (UOx) global knockout (gKO), conditional KO (cKO), and transgenic (Tg) mice with markedly elevated, mildly elevated, and substantially reduced serum urate, respectively, to systematically investigate effects of urate-modifying manipulation on BP. Findings Among clinical trial participants, change in serum urate but not changes in systolic, diastolic and orthostatic BP differed by treatment group. There was no positive correlation between urate elevations and changes in systolic, diastolic and orthostatic BP ((p = .05 (in inverse direction), 0.30 and 0.63, respectively)). Between UOx gKO, cKO, or Tg mice and their respective wildtype littermates there were no significant differences in systolic or diastolic BP or in their responses to BP-regulating interventions. Interpretation Our complementary preclinical and human studies of urate modulation in animal models and in generally healthy early PD do not support a hypertensive effect of urate elevation or an association between urate and BP. Fund U.S. Department of Defense, RJG Foundation, Michael J. Fox Foundation LEAPS program, National Institutes of Health, American Federation for Aging Research, Parkinson's Disease Foundation Advancing Parkinson's Therapies initiative.
Collapse
|
7
|
Gunawardhana SM, Lunte SM. Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:3737-3744. [PMID: 31579297 PMCID: PMC6774626 DOI: 10.1039/c8ay01041b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid monitoring of concentration changes of neurotransmitters and energy metabolites is important for understanding the biochemistry of neurological disease as well as for developing therapeutic options. This paper describes the development of a separation-based sensor using microchip electrophoresis (ME) with electrochemical (EC) detection coupled to microdialysis (MD) sampling for continuous on-line monitoring of adenosine and its downstream metabolites. The device was fabricated completely in PDMS. End-channel electrochemical detection was accomplished using a carbon fiber working electrode embedded in the PDMS. The separation conditions for adenosine, inosine, hypoxanthine, and guanosine were investigated using a ME-EC chip with a 5-cm long separation channel. The best resolution was achieved using a background electrolyte consisting of 35 mM sodium borate at pH 10, 15% dimethyl sulfoxide (DMSO), and 2 mM sodium dodecyl sulphate (SDS), and a field strength of 222 V/cm. Under these conditions, all four purines were separated in less than 85 s. Using a working electrode detection potential of 1.4 vs Ag/AgCl, the limits of detection were 25, 33, 10, and 25 μM for adenosine, inosine, hypoxanthine, and guanosine, respectively. The ME-EC chip was then coupled to microdialysis sampling using a novel all-PDMS microdialysis-microchip interface that was reversibly sealed. This made alignment of the working electrode with the end of the separation channel much easier and more reproducible than could be obtained with previous MD-ME-EC systems. The integrated device was then used to monitor the enzymatic conversion of adenosine to inosine in vitro.
Collapse
Affiliation(s)
- Shamal M Gunawardhana
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
8
|
Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosens Bioelectron 2018; 99:637-645. [DOI: 10.1016/j.bios.2017.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
9
|
A fluorescent biosensor for the determination of xanthine in tea and coffee via enzymatically generated uric acid. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zennaro C, Tonon F, Zarattini P, Clai M, Corbelli A, Carraro M, Marchetti M, Ronda L, Paredi G, Rastaldi MP, Percudani R. The renal phenotype of allopurinol-treated HPRT-deficient mouse. PLoS One 2017; 12:e0173512. [PMID: 28282408 PMCID: PMC5345830 DOI: 10.1371/journal.pone.0173512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Excess of uric acid is mainly treated with xanthine oxidase (XO) inhibitors, also called uricostatics because they block the conversion of hypoxanthine and xanthine into urate. Normally, accumulation of upstream metabolites is prevented by the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. The recycling pathway, however, is impaired in the presence of HPRT deficiency, as observed in Lesch-Nyhan disease. To gain insights into the consequences of purine accumulation with HPRT deficiency, we investigated the effects of the XO inhibitor allopurinol in Hprt-lacking (HPRT-/-) mice. Allopurinol was administered in the drinking water of E12-E14 pregnant mothers at dosages of 150 or 75 μg/ml, and mice sacrificed after weaning. The drug was well tolerated by wild-type animals and heterozygous HPRT+/- mice. Instead, a profound alteration of the renal function was observed in the HPRT-/- model. Increased hypoxanthine and xanthine concentrations were found in the blood. The kidneys showed a yellowish appearance, diffuse interstitial nephritis, with dilated tubules, inflammatory and fibrotic changes of the interstitium. There were numerous xanthine tubular crystals, as determined by HPLC analysis. Oil red O staining demonstrated lipid accumulation in the same location of xanthine deposits. mRNA analysis showed increased expression of adipogenesis-related molecules as well as profibrotic and proinflammatory pathways. Immunostaining showed numerous monocyte-macrophages and overexpression of alpha-smooth muscle actin in the tubulointerstitium. In vitro, addition of xanthine to tubular cells caused diffuse oil red O positivity and modification of the cell phenotype, with loss of epithelial features and appearance of mesenchymal characteristics, similarly to what was observed in vivo. Our results indicate that in the absence of HPRT, blockade of XO by allopurinol causes rapidly developing renal failure due to xanthine deposition within the mouse kidney. Xanthine seems to be directly involved in promoting lipid accumulation and subsequent phenotype changes of tubular cells, with activation of inflammation and fibrosis.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Federica Tonon
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Paola Zarattini
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Trieste, Italy
| | - Milan Clai
- Department of Pathology and Legal Medicine, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Cardiovascular Research, IRCCS Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | | | - Luca Ronda
- Department of Neurosciences, University of Parma, Parma, Italy
| | - Gianluca Paredi
- Department of Pharmacy and SITEIA, PARMA Interdepartmental Center, University of Parma, Parma, Italy
| | - Maria Pia Rastaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | |
Collapse
|
11
|
Cahn MD, Brown AC, Clotfelter ED. Guanine-based structural coloration as an indicator of oxidative stress in a cichlid fish. ACTA ACUST UNITED AC 2015; 323:359-67. [DOI: 10.1002/jez.1926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew D. Cahn
- Department of Biology; Amherst College; Amherst Massachusetts
| | - Alexandria C. Brown
- Department of Biology; Amherst College; Amherst Massachusetts
- Graduate Program in Organismic and Evolutionary Biology; University of Massachusetts; Amherst Massachusetts
| | | |
Collapse
|
12
|
Li ZY, Quan HJ, Gong CB, Yang YZ, Tang Q, Wei YB, Ma XB, Lam HW. Photocontrolled solid-phase extraction of guanine from complex samples using a novel photoresponsive molecularly imprinted polymer. Food Chem 2015; 172:56-62. [DOI: 10.1016/j.foodchem.2014.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/31/2014] [Accepted: 09/06/2014] [Indexed: 12/23/2022]
|
13
|
Cipriani S, Bakshi R, Schwarzschild MA. Protection by inosine in a cellular model of Parkinson's disease. Neuroscience 2014; 274:242-9. [PMID: 24880154 DOI: 10.1016/j.neuroscience.2014.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Inosine (hypoxanthine 9-beta-D-ribofuranoside), a purine nucleoside with multiple intracellular roles, also serves as an extracellular modulatory signal. On neurons, it can produce anti-inflammatory and trophic effects that confer protection against toxic influences in vivo and in vitro. The protective effects of inosine treatment might also be mediated by its metabolite urate. Urate in fact possesses potent antioxidant properties and has been reported to be protective in preclinical Parkinson's disease (PD) studies and to be an inverse risk factor for both the development and progression of PD. In this study we assessed whether inosine might protect rodent MES 23.5 dopaminergic cell line from oxidative stress in a cellular model of PD, and whether its effects could be attributed to urate. MES 23.5 cells cultured alone or in presence of enriched murine astroglial cultures MES 23.5-astrocytes co-cultures were pretreated with inosine (0.1-100 μM) for 24 h before addition of the oxidative stress inducer H₂O₂ (200 μM). Twenty-four hours later, cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or immunocytochemistry in pure and MES 23.5-astrocytes co-cultures, respectively. H₂O₂-toxic effect on dopaminergic cells was reduced when they were cultured with astrocytes, but not when they were cultured alone. Moreover, in MES 23.5-astrocytes co-cultures, indicators of free radical generation and oxidative damage, evaluated by nitrite (NO₂(-)) release and protein carbonyl content, respectively, were attenuated. Conditioned medium experiments indicated that the protective effect of inosine relies on the release of a protective factor from inosine-stimulated astrocytes. Purine levels were measured in the cellular extract and conditioned medium using high-performance liquid chromatography (HPLC) method. Urate concentration was not significantly increased by inosine treatment however there was a significant increase in levels of other purine metabolites, such as adenosine, hypoxanthine and xanthine. In particular, in MES 23.5-astrocytes co-cultures, inosine medium content was reduced by 99% and hypoxanthine increased by 127-fold. Taken together these data raise the possibility that inosine might have a protective effect in PD that is independent of any effects mediated through its metabolite urate.
Collapse
Affiliation(s)
- S Cipriani
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA.
| | - R Bakshi
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA
| | - M A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA
| |
Collapse
|
14
|
McFarland NR, Burdett T, Desjardins CA, Frosch MP, Schwarzschild MA. Postmortem brain levels of urate and precursors in Parkinson's disease and related disorders. NEURODEGENER DIS 2013; 12:189-98. [PMID: 23467193 PMCID: PMC3809155 DOI: 10.1159/000346370] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 12/09/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that urate may play an important role in neurodegenerative disease. In Parkinson's disease (PD) higher, but still normal, levels of blood and cerebrospinal fluid urate have been associated with a lower rate of disease progression. OBJECTIVE We explored the hypothesis that lower levels of urate and its purine precursors in brain may be associated with PD and related neurodegenerative disorders, including Alzheimer's disease (AD) and Lewy body dementia (DLB). METHODS Human postmortem brain tissues were obtained from PD, AD, and DLB patients and non-neurodegenerative disease controls. We measured urate and other purine pathway analytes in the frontal and temporal cortex, striatum, and cerebellum, using high-performance liquid chromatography with electrochemical and ultraviolet detection. RESULTS Age was well-matched among groups. Mean postmortem interval for samples was 16.3 ± 9.9 h. Urate levels in cortical and striatal tissue trended lower in PD and AD compared to controls in males only. These findings correlated with increased urate in male versus female control tissues. By contrast, in DLB urate levels were significantly elevated relative to PD and AD. Measurement of urate precursors suggested a decrease in xanthine in PD compared to AD in females only, and relative increases in inosine and adenosine in DLB and AD samples among males. Xanthine and hypoxanthine were more concentrated in striatal tissue than in other brain regions. CONCLUSIONS Though limited in sample size, these findings lend support to the inverse association between urate levels and PD, as well as possibly AD. The finding of increased urate in DLB brain tissue is novel and warrants further study.
Collapse
Affiliation(s)
- Nikolaus R McFarland
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida College of Medicine, Gainesville, Fla., USA
| | | | | | | | | |
Collapse
|
15
|
Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A 2012; 110:300-5. [PMID: 23248282 DOI: 10.1073/pnas.1217296110] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Urate is the end product of purine metabolism in humans, owing to the evolutionary disruption of the gene encoding urate oxidase (UOx). Elevated urate can cause gout and urolithiasis and is associated with cardiovascular and other diseases. However, urate also possesses antioxidant and neuroprotective properties. Recent convergence of epidemiological and clinical data has identified urate as a predictor of both reduced risk and favorable progression of Parkinson's disease (PD). In rodents, functional UOx catalyzes urate oxidation to allantoin. We found that UOx KO mice with a constitutive mutation of the gene have increased concentrations of brain urate. By contrast, UOx transgenic (Tg) mice overexpressing the enzyme have reduced brain urate concentrations. Effects of the complementary UOx manipulations were assessed in a mouse intrastriatal 6-hydroxydopamine (6-OHDA) model of hemiparkinsonism. UOx KO mice exhibit attenuated toxic effects of 6-OHDA on nigral dopaminergic cell counts, striatal dopamine content, and rotational behavior. Conversely, Tg overexpression of UOx exacerbates these morphological, neurochemical, and functional lesions of the dopaminergic nigrostriatal pathway. Together our data support a neuroprotective role of endogenous urate in dopaminergic neurons and strengthen the rationale for developing urate-elevating strategies as potential disease-modifying therapy for PD.
Collapse
|
16
|
Cipriani S, Desjardins CA, Burdett TC, Xu Y, Xu K, Schwarzschild MA. Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J Neurochem 2012; 123:172-81. [PMID: 22671773 DOI: 10.1111/j.1471-4159.2012.07820.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Urate is the end product of purine metabolism and a major antioxidant circulating in humans. Recent data link higher levels of urate with a reduced risk of developing Parkinson's disease and with a slower rate of its progression. In this study, we investigated the role of astrocytes in urate-induced protection of dopaminergic cells in a cellular model of Parkinson's disease. In mixed cultures of dopaminergic cells and astrocytes oxidative stress-induced cell death and protein damage were reduced by urate. By contrast, urate was not protective in pure dopaminergic cell cultures. Physical contact between dopaminergic cells and astrocytes was not required for astrocyte-dependent rescue as shown by conditioned medium experiments. Urate accumulation in dopaminergic cells and astrocytes was blocked by pharmacological inhibitors of urate transporters expressed differentially in these cells. The ability of a urate transport blocker to prevent urate accumulation into astroglial (but not dopaminergic) cells predicted its ability to prevent dopaminergic cell death. Transgenic expression of uricase reduced urate accumulation in astrocytes and attenuated the protective influence of urate on dopaminergic cells. These data indicate that urate might act within astrocytes to trigger release of molecule(s) that are protective for dopaminergic cells.
Collapse
Affiliation(s)
- Sara Cipriani
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|