1
|
Kovacs D, Flori E, Bastonini E, Mosca S, Migliano E, Cota C, Zaccarini M, Briganti S, Cardinali G. Targeting Fatty Acid Amide Hydrolase Counteracts the Epithelial-to-Mesenchymal Transition in Keratinocyte-Derived Tumors. Int J Mol Sci 2023; 24:17379. [PMID: 38139209 PMCID: PMC10743516 DOI: 10.3390/ijms242417379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| |
Collapse
|
2
|
Flori E, Mosca S, Cardinali G, Briganti S, Ottaviani M, Kovacs D, Manni I, Truglio M, Mastrofrancesco A, Zaccarini M, Cota C, Piaggio G, Picardo M. The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis. Cells 2023; 12:cells12071007. [PMID: 37048080 PMCID: PMC10093137 DOI: 10.3390/cells12071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Picardo
- Faculty of Medicine, Unicamillus International Medical University, 00131 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| |
Collapse
|
3
|
Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Briganti S, Cardinali G, Filoni A, Cameli N, Zaccarini M, Zouboulis CC, Picardo M. Sebocytes contribute to melasma onset. iScience 2022; 25:103871. [PMID: 35252805 PMCID: PMC8891974 DOI: 10.1016/j.isci.2022.103871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Melasma is a hyperpigmentary disorder with photoaging features, whose manifestations appear on specific face areas, rich in sebaceous glands (SGs). To explore the SGs possible contribution to the onset, the expression of pro-melanogenic and inflammatory factors from the SZ95 SG cell line exposed to single or repetitive ultraviolet (UVA) radiation was evaluated. UVA up-modulated the long-lasting production of α-MSH, EDN1, b-FGF, SCF, inflammatory cytokines and mediators. Irradiated SZ95 sebocyte conditioned media increased pigmentation in melanocytes and the expression of senescence markers, pro-inflammatory cytokines, and growth factors regulating melanogenesis in fibroblasts cultures. Cocultures experiments with skin explants confirmed the role of sebocytes on melanogenesis promotion. The analysis on sebum collected from melasma patients demonstrated that in vivo sebocytes from lesional areas express the UVA-activated pathways markers observed in vitro. Our results indicate sebocytes as one of the actors in melasma pathogenesis, inducing prolonged skin cell stimulation, contributing to localized dermal aging and hyperpigmentation.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Angela Filoni
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Norma Cameli
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Furugen A. [Transfer Mechanisms of Compounds between Mother and Fetus/Infant Aimed for Optimized Medication during Pregnancy and Breastfeeding]. YAKUGAKU ZASSHI 2020; 140:1199-1206. [PMID: 32999198 DOI: 10.1248/yakushi.20-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potential risks to the fetus or infant should be considered prior to medication during pregnancy and lactation. It is essential to evaluate the exposure levels of drugs and their related factors in addition to toxicological effects. Epilepsy is one of the most common neurological complications in pregnancy; some women continue to use antiepileptic drugs (AEDs) to control seizures. Benzodiazepines (BZDs) are widely prescribed for several women who experience symptoms such as anxiety and insomnia during the postpartum period. In this review, we describe the 1) transport mechanisms of AEDs across the placenta and the effects of these drugs on placental transporters, and 2) the transfer of BZDs into breast milk. Our findings indicated that carrier systems were involved in the uptake of gabapentin (GBP) and lamotrigine (LTG) in placental trophoblast cell lines. SLC7A5 was the main contributor to GBP transport in placental cells. LTG was transported by a carrier that was sensitive to chloroquine, imipramine, quinidine, and verapamil. Short-term exposure to 16 AEDs had no effect on folic acid uptake in placental cells. However, long-term exposure to valproic acid (VPA) affected the expression of folate carriers (FOLR1, SLC46A1). Furthermore, VPA administration changed the expression levels of various transporters in rat placenta, suggesting that sensitivity to VPA differed across gestational stages. Lastly, we developed a method for quantifying eight BZDs in human breast milk and plasma using LC/MS/MS, and successfully applied it to quantify alprazolam in breast milk and plasma donated by a lactating woman.
Collapse
Affiliation(s)
- Ayako Furugen
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
5
|
Thakare R, Chhonker YS, Gautam N, Nelson A, Casaburi R, Criner G, Dransfield MT, Make B, Schmid KK, Rennard SI, Alnouti Y. Simultaneous LC-MS/MS analysis of eicosanoids and related metabolites in human serum, sputum and BALF. Biomed Chromatogr 2018; 32:10.1002/bmc.4102. [PMID: 28975688 PMCID: PMC6003856 DOI: 10.1002/bmc.4102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/24/2017] [Indexed: 01/09/2023]
Abstract
The differences among individual eicosanoids in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual eicosanoids and their metabolites in serum, sputum and bronchial alveolar lavage fluid (BALF). Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 34 eicosanoids in human serum, sputum and BALF was developed and validated. This method is valid and sensitive with a limit of quantification ranging from 0.2 to 3 ng/mL for the various analytes, and has a large dynamic range (500 ng/mL) and a short run time (25 min). The intra- and inter-day accuracy and precision values met the acceptance criteria according to US Food and Drug Administration guidelines. Using this method, detailed eicosanoid profiles were quantified in serum, sputum and BALF from a pilot human study. In summary, a reliable and simple LC-MS/MS method to quantify major eicosanoids and their metabolites was developed and applied to quantify eicosanoids in human various fluids, demonstrating its suitability to assess eicosanoid biomarkers in human clinical trials.
Collapse
Affiliation(s)
- Rhishikesh Thakare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S. Chhonker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy Nelson
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Gerard Criner
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama Birmingham, AL, USA
- Lung Health Center University of Alabama Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Barry Make
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Kendra K. Schmid
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stephen I. Rennard
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Clinical Development Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|