1
|
Dobričić V, Marodi M, Marković B, Tomašič T, Durcik M, Zidar N, Mašič LP, Ilaš J, Kikelj D, Čudina O. Estimation of passive gastrointestinal absorption of new dual DNA gyrase and topoisomerase IV inhibitors using PAMPA and biopartitioning micellar chromatography and quantitative structure-retention relationship analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124158. [PMID: 38776787 DOI: 10.1016/j.jchromb.2024.124158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.
Collapse
Affiliation(s)
- Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Marko Marodi
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers (Basel) 2022; 14:polym14153182. [PMID: 35956697 PMCID: PMC9370872 DOI: 10.3390/polym14153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Collapse
|
3
|
Carrasco-Correa EJ, Ruiz-Allica J, Rodríguez-Fernández JF, Miró M. Human artificial membranes in (bio)analytical science: Potential for in vitro prediction of intestinal absorption-A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Fernandes E, Benfeito S, Cagide F, Gonçalves H, Bernstorff S, Nieder JB, Cd Real Oliveira ME, Borges F, Lúcio M. Lipid Nanosystems and Serum Protein as Biomimetic Interfaces: Predicting the Biodistribution of a Caffeic Acid-Based Antioxidant. Nanotechnol Sci Appl 2021; 14:7-27. [PMID: 33603350 PMCID: PMC7882595 DOI: 10.2147/nsa.s289355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose AntiOxCIN3 is a novel mitochondriotropic antioxidant developed to minimize the effects of oxidative stress on neurodegenerative diseases. Prior to an investment in pre-clinical in vivo studies, it is important to apply in silico and biophysical cell-free in vitro studies to predict AntiOxCIN3 biodistribution profile, respecting the need to preserve animal health in accordance with the EU principles (Directive 2010/63/EU). Accordingly, we propose an innovative toolbox of biophysical studies and mimetic models of biological interfaces, such as nanosystems with different compositions mimicking distinct membrane barriers and human serum albumin (HSA). Methods Intestinal and cell membrane permeation of AntiOxCIN3 was predicted using derivative spectrophotometry. AntiOxCIN3 –HSA binding was evaluated by intrinsic fluorescence quenching, synchronous fluorescence, and dynamic/electrophoretic light scattering. Steady-state and time-resolved fluorescence quenching was used to predict AntiOxCIN3-membrane orientation. Fluorescence anisotropy, synchrotron small- and wide-angle X-ray scattering were used to predict lipid membrane biophysical impairment caused by AntiOxCIN3 distribution. Results and Discussion We found that AntiOxCIN3 has the potential to permeate the gastrointestinal tract. However, its biodistribution and elimination from the body might be affected by its affinity to HSA (>90%) and by its steady-state volume of distribution (VDSS=1.89± 0.48 L∙Kg−1). AntiOxCIN3 is expected to locate parallel to the membrane phospholipids, causing a bilayer stiffness effect. AntiOxCIN3 is also predicted to permeate through blood-brain barrier and reach its therapeutic target – the brain. Conclusion Drug interactions with biological interfaces may be evaluated using membrane model systems and serum proteins. This knowledge is important for the characterization of drug partitioning, positioning and orientation of drugs in membranes, their effect on membrane biophysical properties and the study of serum protein binding. The analysis of these interactions makes it possible to collect valuable knowledge on the transport, distribution, accumulation and, eventually, therapeutic impact of drugs which may aid the drug development process.
Collapse
Affiliation(s)
- Eduarda Fernandes
- Departamento de Física da Universidade do Minho, CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Braga, 4710-057, Portugal.,Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S. C.p.A.,, Basovizza, Trieste, I-34149, Italy
| | - Jana B Nieder
- Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - M Elisabete Cd Real Oliveira
- Departamento de Física da Universidade do Minho, CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Marlene Lúcio
- Departamento de Física da Universidade do Minho, CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Braga, 4710-057, Portugal.,CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
5
|
Biopartitioning micellar chromatography under different conditions: Insight into the retention mechanism and the potential to model biological processes. J Chromatogr A 2020; 1621:461027. [PMID: 32276854 DOI: 10.1016/j.chroma.2020.461027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the present study, 88 structurally- diverse drugs were investigated by biopartitioning micellar chromatography (BMC) using Brij-35 as surfactant under different chromatographic conditions. It was found that temperature and presence of NaCl have only a minor effect in BMC retention. Correlation of BMC retention factors with octanol-water partitioning required the inclusion of fractions of ionized species as additional parameters, showing that there is a weaker effect of ionization in BMC environment. Compared to Immobilized Artificial Membrane (IAM) Chromatography, BMC retention factors cover a relatively narrow span, two-fold smaller than retention factors on IAM stationary phases as a result of the presence of micelles facilitating elution of lipophilic compounds and the absence of secondary attractive electrostatic interactions in the BMC environment. Similarities/dissimilarities between BMC, octanol-water partitioning and IAM Chromatography were investigated by Linear Free Energy Relationships (LSER). BMC retention factors were used to construct relationships with cell permeability,% Human Oral Absorption (%HOA) and Plasma Protein Binding (%PPB). Linear BMC models were obtained with Caco-2 cell lines and Parallel Artificial Membrane Permeability Assay (PAMPA). For %HOA, a hyperbolic model was established upon incorporation of topological polar surface area (tPSA) as additional parameter. A sigmoidal model was constructed for %PPB and a linear one for the corresponding thermodynamic binding constant logK. In both cases inclusion of the fraction of anionic species with a positive sign was required reflecting the preference of human albumin for acidic drugs.
Collapse
|
6
|
Sobańska AW, Brzezińska E. Application of planar and column micellar liquid chromatography to the prediction of physicochemical properties and biological activity of compounds. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1585614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, Lodz, Poland
| | - Elżbieta Brzezińska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, Lodz, Poland
| |
Collapse
|
7
|
Shokry DS, Waters LJ, Parkes GMB, Mitchell JC. Prediction of human intestinal absorption using micellar liquid chromatography with an aminopropyl stationary phase. Biomed Chromatogr 2019; 33:e4515. [PMID: 30811616 DOI: 10.1002/bmc.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022]
Abstract
The extent of human intestinal absorption (HIA) for a drug is considered to be an important pharmacokinetic parameter which must be determined for orally administered drugs. Traditional experimental methods relied upon animal testing and are renowned for being time consuming and expensive as well as being ethically unfavourable. As a result, the development of alternative methods to evaluate a drug's pharmacokinetics is crucial. Micellar liquid chromatography is considered to be one of these methods that can replace the use of animals in the prediction of HIA. In this study, the combination of an aminopropyl column with the biosurfactant sodium deoxycholate bile salt was used in the experimental determination of micelle-water partition coefficients (log Pmw ) for a group of compounds. Multiple linear regression was then used for the prediction of HIA using the experimentally determined log Pmw along with other molecular descriptors, leading to the construction of a model equation of R2 = 85% and a prediction power represented by R2 Pred. = 72%. The use of micellar liquid chromatography with an aminopropyl column in combination with sodium deoxycholate was found to be a good method for the prediction of human intestinal absorption, providing data for a far wider range of compounds compared with previous studies.
Collapse
Affiliation(s)
- Dina S Shokry
- School of Engineering and Science, Medway Centre for Pharmaceutical Science, University of Greenwich, Chatham, Kent, UK
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Gareth M B Parkes
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - John C Mitchell
- School of Engineering and Science, Medway Centre for Pharmaceutical Science, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
8
|
Shokry DS, Waters LJ, Parkes GMB, Mitchell JC. Incorporating physiologically relevant mobile phases in micellar liquid chromatography for the prediction of human intestinal absorption. Biomed Chromatogr 2018; 32:e4351. [PMID: 30062715 PMCID: PMC6282790 DOI: 10.1002/bmc.4351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
Micellar liquid chromatography is a popular method used in the determination of a compound's lipophilicity. This study describes the use of the obtained micelle-water partition coefficient (log Pmw ) by such a method in the prediction of human intestinal absorption (HIA). As a result of the close resemblance of the novel composition of the micellar mobile phase to that of physiological intestinal fluid, prediction was deemed to be highly successful. The unique micellar mobile phase consisted of a mixed micellar mixture of lecithin and six bile salts, i.e. a composition matching that found in the human intestinal environment, prepared in ratios resembling those in the intestine. This is considered to be the first method to use a physiological mixture of biosurfactants in the prediction of HIA. As a result, a mathematical model with high predictive ability (R2 PRED = 81%) was obtained using multiple linear regression. The micelle-water partition coefficient (log Pmw ) obtained from micellar liquid chromatography was found to be a successful tool for prediction where the final optimum model included log Pmw and polar surface area as key descriptors with high statistical significance for the prediction of HIA. This can be attributed to the nature of the mobile phase used in this study which contains the lecithin-bile salt complex, thus forming a bilayer system and therefore mimicking absorption across the intestinal membrane.
Collapse
Affiliation(s)
- Dina S. Shokry
- Faculty of Engineering and Science, Medway Centre for Formulation ScienceUniversity of GreenwichKentUK
| | - Laura J. Waters
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | | | - John C. Mitchell
- Faculty of Engineering and Science, Medway Centre for Formulation ScienceUniversity of GreenwichKentUK
| |
Collapse
|
9
|
Shokry DS, Waters LJ, Parkes GMB, Mitchell JC, Snowden MJ. Formation of a Bile Salt-Drug Hydrogel to Predict Human Intestinal Absorption. J Pharm Sci 2018; 108:279-287. [PMID: 30321545 DOI: 10.1016/j.xphs.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
The unique character of bile salts to self-assemble into hydrogels in the presence of halide salts was exploited in this work to facilitate the prediction of human intestinal absorption (%HIA) for a set of 25 compounds. This was achieved by firstly incorporating each compound separately within the process of gel formation to create a series of gel-drug membranes. Scanning electron microscopy analysis of the freeze-dried samples of the blank bile salt hydrogels and drug-loaded bile salt hydrogels indicated a unique microstructure made of a network of intertwined fibrils. Drug-loaded sodium deoxycholate hydrogels were then utilized as the donor phase to study permeability using flow-through and static diffusion cells. The resulting values of the release-permeability coefficient (Kp) were then analyzed, along with other molecular descriptors, for the %HIA using multiple linear regression. Overall, when comparing predicted values (using the systems presented in this study) with known literature values, it can be seen that both methods (i.e., using static and flow-through cells) had good predictability with R2PRED values of 79.8% and 79.7%, respectively. This study therefore proposes a novel, accurate, and precise way to predict HIA for compounds of pharmaceutical interest using a simple in vitro permeation system. It is important to develop alternatives to the current methods used in prediction of HIA, which are expensive and time-consuming or include the use of animals. Therefore, the proposed method in this study being economic and time-saving provides superiority over these current methods and suggests the possibility of its use as an alternate to such methods for prediction of HIA.
Collapse
Affiliation(s)
- Dina S Shokry
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Gareth M B Parkes
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - John C Mitchell
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Martin J Snowden
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| |
Collapse
|
10
|
Waters LJ, Shokry DS, Parkes GM, Mitchell JC. The Use of Bile Salt Micelles for the Prediction of Human Intestinal Absorption. J Pharm Sci 2016; 105:3611-3614. [DOI: 10.1016/j.xphs.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023]
|