2
|
Wang J, Van Parys M, Pan L, Chen Y, Cheung D, McKnight J, Milanowski D, Ding X, Dean B. Determination of a novel antifibrotic small molecule GDC-3280 in human plasma and urine by liquid chromatography tandem mass spectrometry to support its first-in-human clinical trial. Biomed Chromatogr 2019; 33:e4482. [DOI: 10.1002/bmc.4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jianshuang Wang
- Department of Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA USA
| | - Michael Van Parys
- Department of Bioanalytical Chemistry; Covance Laboratories Inc.; Madison WI USA
| | - Lin Pan
- Department of Clinical Pharmacology; Genentech Inc; South San Francisco CA USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA USA
| | - Dorothy Cheung
- Department of Early Clinical Development; Genentech Inc; South San Francisco CA USA
| | - Janine McKnight
- Department of Bioanalytical Chemistry; Covance Laboratories Inc.; Madison WI USA
| | - Dennis Milanowski
- Department of Bioanalytical Chemistry; Covance Laboratories Inc.; Madison WI USA
| | - Xiao Ding
- Department of Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA USA
| | - Brian Dean
- Department of Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA USA
| |
Collapse
|
3
|
Takahashi RH, Halladay JS, Siu M, Chen Y, Hop CECA, Khojasteh SC, Ma S. Novel Mechanism of Decyanation of GDC-0425 by Cytochrome P450. Drug Metab Dispos 2017; 45:430-440. [PMID: 28188299 DOI: 10.1124/dmd.116.074336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 02/13/2025] Open
Abstract
GDC-0425 [5-((1-ethylpiperidin-4-yl)oxy)-9H-pyrrolo[2,3-b:5,4-c']dipyridine-6-carbonitrile] is an orally bioavailable small-molecule inhibitor of checkpoint kinase 1 that was investigated as a novel cotherapy to potentiate chemotherapeutic drugs, such as gemcitabine. In a radiolabeled absorption, distribution, metabolism, and excretion study in Sprague-Dawley rats, trace-level but long-lived 14C-labeled thiocyanate was observed in circulation. This thiocyanate originated from metabolic decyanation of GDC-0425 and rapid conversion of cyanide to thiocyanate. Excretion studies indicated decyanation was a minor metabolic pathway, but placing 14C at nitrile magnified its observation. Cytochrome P450s catalyzed the oxidative decyanation reaction in vitro when tested with liver microsomes, and in the presence of 18O2, one atom of 18O was incorporated into the decyanated product. To translate this finding to a clinical risk assessment, the total circulating levels of thiocyanate (endogenous plus drug-derived) were measured following repeated administration of GDC-0425 to rats and cynomolgus monkeys. No overt increases were observed with thiocyanate concentrations of 121-154 µM in rats and 71-110 µM in monkeys receiving vehicle and all tested doses of GDC-0425. These findings were consistent with results from the radiolabel rat study where decyanation accounted for conversion of <1% of the administered GDC-0425 and contributed less than 1 µM thiocyanate to systemic levels. Further, in vitro studies showed only trace oxidative decyanation for humans. These data indicated that, although cyanide was metabolically released from GDC-0425 and formed low levels of thiocyanate, this pathway was a minor route of metabolism, and GDC-0425-related increases in systemic thiocyanate were unlikely to pose safety concerns for subjects of clinical studies.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - Jason S Halladay
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - Michael Siu
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - Yuan Chen
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - Cornelis E C A Hop
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - S Cyrus Khojasteh
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| | - Shuguang Ma
- Departments of Drug Metabolism and Pharmacokinetics (R.H.T., J.S.H., Y.C., C.E.C.A.H., S.C.K., S.M.), and Discovery Chemistry (M.S.), Genentech, Inc., 1 DNA Way, South San Francisco, California
| |
Collapse
|
4
|
Infante JR, Hollebecque A, Postel-Vinay S, Bauer TM, Blackwood EM, Evangelista M, Mahrus S, Peale FV, Lu X, Sahasranaman S, Zhu R, Chen Y, Ding X, Murray ER, Schutzman JL, Lauchle JO, Soria JC, LoRusso PM. Phase I Study of GDC-0425, a Checkpoint Kinase 1 Inhibitor, in Combination with Gemcitabine in Patients with Refractory Solid Tumors. Clin Cancer Res 2016; 23:2423-2432. [PMID: 27815358 DOI: 10.1158/1078-0432.ccr-16-1782] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Chk1 inhibition potentiates DNA-damaging chemotherapy by overriding cell-cycle arrest and genome repair. This phase I study evaluated the Chk1 inhibitor GDC-0425 given in combination with gemcitabine to patients with advanced solid tumors.Experimental Design: Patients received GDC-0425 alone for a 1-week lead-in followed by 21-day cycles of gemcitabine plus GDC-0425. Gemcitabine was initially administered at 750 mg/m2 (Arm A), then increased to 1,000 mg/m2 (Arm B), on days 1 and 8 in a 3 + 3 + 3 dose escalation to establish maximum tolerated dose (MTD). GDC-0425 was initially administered daily for three consecutive days; however, dosing was abbreviated to a single day on the basis of pharmacokinetics and tolerability. TP53 mutations were evaluated in archival tumor tissue. On-treatment tumor biopsies underwent pharmacodynamic biomarker analyses.Results: Forty patients were treated with GDC-0425. The MTD of GDC-0425 was 60 mg when administered approximately 24 hours after gemcitabine 1,000 mg/m2 Dose-limiting toxicities included thrombocytopenia (n = 5), neutropenia (n = 4), dyspnea, nausea, pyrexia, syncope, and increased alanine aminotransferase (n = 1 each). Common related adverse events were nausea (48%); anemia, neutropenia, vomiting (45% each); fatigue (43%); pyrexia (40%); and thrombocytopenia (35%). The GDC-0425 half-life was approximately 15 hours. There were two confirmed partial responses in patients with triple-negative breast cancer (TP53-mutated) and melanoma (n = 1 each) and one unconfirmed partial response in a patient with cancer of unknown primary origin.Conclusions: Chk1 inhibition with GDC-0425 in combination with gemcitabine was tolerated with manageable bone marrow suppression. The observed preliminary clinical activity warrants further investigation of this chemopotentiation strategy. Clin Cancer Res; 23(10); 2423-32. ©2016 AACR.
Collapse
Affiliation(s)
- Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee.
| | - Antoine Hollebecque
- Départemement d'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Sophie Postel-Vinay
- Départemement d'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France.,INSERM, U981, Villejuif, France
| | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | | | - Sami Mahrus
- Genentech, Inc., South San Francisco, California
| | | | - Xuyang Lu
- Genentech, Inc., South San Francisco, California
| | | | - Rui Zhu
- Genentech, Inc., South San Francisco, California
| | - Yuan Chen
- Genentech, Inc., South San Francisco, California
| | - Xiao Ding
- Genentech, Inc., South San Francisco, California
| | | | | | | | - Jean-Charles Soria
- Départemement d'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France.,INSERM, U981, Villejuif, France
| | | |
Collapse
|