1
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
2
|
Zhang P, Fan L, Zhang D, Zhang Z, Wang W. In Vitro Anti-Tumor and Hypoglycemic Effects of Total Flavonoids from Willow Buds. Molecules 2023; 28:7557. [PMID: 38005279 PMCID: PMC10673267 DOI: 10.3390/molecules28227557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Salix babylonica L. is a species of willow tree that is widely cultivated worldwide as an ornamental plant, but its medicinal resources have not yet been reasonably developed or utilized. Herein, we extracted and purified the total flavonoids from willow buds (PTFW) for component analysis in order to evaluate their in vitro anti-tumor and hypoglycemic activities. Through Q-Orbitrap LC-MS/MS analysis, a total of 10 flavonoid compounds were identified (including flavones, flavan-3-ols, and flavonols). The inhibitory effects of PTFW on the proliferation of cervical cancer HeLa cells, colon cancer HT-29 cells, and breast cancer MCF7 cells were evaluated using an MTT assay. Moreover, the hypoglycemic activity of PTFW was determined by investigating the inhibitory effects of PTFW on α-amylase and α-glucosidase. The results indicated that PTFW significantly suppressed the proliferation of HeLa cells, HT-29 cells, and MCF7 cells, with IC50 values of 1.432, 0.3476, and 2.297 mg/mL, respectively. PTFW, at different concentrations, had certain inhibitory effects on α-amylase and α-glucosidase, with IC50 values of 2.94 mg/mL and 1.87 mg/mL, respectively. In conclusion, PTFW at different doses exhibits anti-proliferation effects on all three types of cancer cells, particularly on HT-29 cells, and also shows significant hypoglycemic effects. Willow buds have the potential to be used in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Lulu Fan
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Dongyan Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Zehui Zhang
- College of Laboratory Animal Medicine and Science, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
| | - Weili Wang
- Liao Ning Institute for Drug Control, Shenyang 110031, China
| |
Collapse
|
3
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Mi H, Zhang P, Yao L, Gao H, Wei F, Lu T, Ma S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules 2023; 28:molecules28103990. [PMID: 37241730 DOI: 10.3390/molecules28103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Crude herbs of Daphne genkwa (CHDG) are often used in traditional Chinese medicine to treat scabies baldness, carbuncles, and chilblain owing to their significant purgation and curative effects. The most common technique for processing DG involves the use of vinegar to reduce the toxicity of CHDG and enhance its clinical efficacy. Vinegar-processed DG (VPDG) is used as an internal medicine to treat chest and abdominal water accumulation, phlegm accumulation, asthma, and constipation, among other diseases. In this study, the changes in the chemical composition of CHDG after vinegar processing and the inner components of the changed curative effects were elucidated using optimized ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Untargeted metabolomics, based on multivariate statistical analyses, was also used to profile differences between CHDG and VPDG. Eight marker compounds were identified using orthogonal partial least-squares discrimination analysis, which indicated significant differences between CHDG and VPDG. The concentrations of apigenin-7-O-β-d-methylglucuronate and hydroxygenkwanin were considerably higher in VPDG than those in CHDG, whereas the amounts of caffeic acid, quercetin, tiliroside, naringenin, genkwanines O, and orthobenzoate 2 were significantly lower. The obtained results can indicate the transformation mechanisms of certain changed compounds. To the best of our knowledge, this study is the first to employ mass spectrometry to detect the marker components of CHDG and VPDG.
Collapse
Affiliation(s)
- Hongying Mi
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Ping Zhang
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Lingwen Yao
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Wei
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Tulin Lu
- School of Chinese Material Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Shuangcheng Ma
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| |
Collapse
|
5
|
Analytical quality by design methodology for botanical raw material analysis: a case study of flavonoids in Genkwa Flos. Sci Rep 2021; 11:11936. [PMID: 34099770 PMCID: PMC8185112 DOI: 10.1038/s41598-021-91341-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
The present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.
Collapse
|
6
|
Patel ND, Prajapati PN, Kanaki NS. Quality Assessment of Sitopaladi Churna Using High-Performance Liquid Chromatography Coupled with Multivariate Analysis. J Chromatogr Sci 2021; 58:961-968. [PMID: 33015709 DOI: 10.1093/chromsci/bmaa070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 11/14/2022]
Abstract
"Sitopaladi churna," a well-known formulation of Ayurveda, is prescribed to treat the disease like Bronchitis, Pneumonia, allergic conditions, viral infection of the respiratory tract and as a natural antioxidant. A novel method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to photodiode array detector was established and validated for sitopaladi churna. Here, HPLC fingerprints data obtained for 28 samples including standard sample were then treated to chemometric analysis like principal component analysis and hierarchical clustering analysis for further analysis to evaluate the differences in market samples of sitopaladi churna. Additionally, one major marker compound, piperine was quantified and it also facilitated for relative retention time. The simulative mean spectrum was also generated. The validation results showed that the developed method was simple, precise and stable. Thus, the developed chromatographic method adjoined with multivariate analysis can be used as an efficient and practical approach for quality assessment of sitopaladi churna.
Collapse
Affiliation(s)
- Nikunj D Patel
- Department of Pharmaceutical sciences, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Campus, GH-6 Circle, Sector 23, Gandhinagar 382023, India
| | - Prajesh N Prajapati
- Institute of Research and Development, Gujarat Forensic Sciences University, National Highway 8C, near DFS Head Quarters, Sector 9, Gandhinagar 382007, India
| | - Niranjan S Kanaki
- Department of Pharmaceutical sciences, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Campus, GH-6 Circle, Sector 23, Gandhinagar 382023, India
| |
Collapse
|
7
|
Study on the Spectrum-Effect Relationship of the Traditional Effect of Saponins in Glycyrrhiza uralensis Fisch. Int J Anal Chem 2021; 2021:6617033. [PMID: 33815504 PMCID: PMC7990542 DOI: 10.1155/2021/6617033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/18/2022] Open
Abstract
Licorice is a traditional Chinese medicine that has been used for a long time in China and still in great use today. The effect of licorice on tonifying spleen and invigorating qi has been proved for thousands of years, but the material basis of its effect is not clear. In this paper, we established the fingerprints of 21 batches of licorice collected from different origins in China with High-Performance Liquid Chromatography (HPLC) to identify the common peaks. Its effect of tonifying spleen and invigorating qi was confirmed through a series of praxiology experiments. The spectrum-effect relationship between HPLC fingerprints and its effect of tonifying spleen and invigorating qi of licorice was examined by gray relational analysis and partial least squares regression analysis. Results showed that the effect of licorice on tonifying spleen and invigorating qi resulted from various compounds and peaks. X2–X6 is presumed to be the main pharmacological substance base. This research successfully identified the spectrum-effect relationship between HPLC fingerprints and the effect of licorice on tonifying spleen and invigorating qi. The research method based on the spectrum-effect relationship helps provide new research ideas and strategies for the study of the basis of the medicinal materials and quality control of traditional Chinese medicine.
Collapse
|
8
|
Zhang Q, Li ZL, Xu JD, Xu QQ, Zhang Y, Guo SJ, Yao WF, Bao BH, Tang YP, Zhang L. Toxicity reduction and water expelling effect preservation of Shizaotang after its toxic members processing with vinegar on rats with malignant pleural effusions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113583. [PMID: 33189845 DOI: 10.1016/j.jep.2020.113583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shizaotang (SZT), consisted of Euphorbia kansui S.L.Liou ex S.B.Ho (EK), Euphorbia pekinensis Rupr. (EP), Daphne genkwa Sieb. et Zucc. (DG,fried) and Ziziphus jujuba Mill. (ZJ), is usually used for treating malignant pleural effusions (MPE), but the toxicity of EK and EP limits its clinical safe application. It was reported that vinegar processing can reduce the toxicity of EK and EP. Whether EK and EP processing with vinegar can cause the reduced toxicity and retained pharmacological effects of SZT, it still remains unknown. AIM OF THE STUDY We aimed to evaluate whether using vinegar processed EK and EP would reduce toxicity and preserve water expelling effect of SZT. MATERIALS AND METHODS Network pharmacology and qualitative analysis of SZT/VSZT were used to construct compound-target-pathway network of their effects and toxicity. Pleural fluid weight, urine volume, uric electrolyte, pH, pro-inflammatory cytokines in pleural fluid, serum Renin-Angiotensin-Aldosterone System (RAAS), anti-diuretic hormone (ADH) and intestinal aquaporin 8 (AQP8) protein were used to evaluate the effect mechanisms involved in rats experiments. And liver damage, oxidative damage and HE staining (liver, stomach, and intestine) were used to determine the toxicity. RESULTS Network pharmacology analysis reviewed inflammation-related pathways of the effect and toxicity of SZT/VSZT: VEGF-PI3K-AKT pathway inhibited MPE by changing the vasopermeability; PI3K-Akt/Mitogen-activated protein kinase (MAPK)/TNF-NF-κB signaling pathway inhibited MPE by up-regulating expression of AQP8 protein. In vivo experiments displayed that SZT/VSZT could reduce pleural fluid, increase urine volume, lower pro-inflammatory cytokines levels and up-regulate AQP8 protein expression significantly (P < 0.05, P < 0.01). In addition, disorders on electrolyte (Na+, K+ and Cl-) and pH were ameliorated (P < 0.05, P < 0.01). The levels of RAAS and ADH were significantly dose-dependently called back (P < 0.01). These findings were partly consistent with the results of network pharmacology analysis. Results of toxicity experiments demonstrated that SZT and VSZT exhibited certain toxicity on normal rats, and VSZT had lower toxicity than that of SZT. Interestingly, SZT and VSZT exerted alleviation effect to the liver damage and oxidative damage on model rats. CONCLUSION SZT/VSZT improved MPE by regulating associated inflammation pathways. Besides, compared to SZT, VSZT showed lower toxicity and equivalent expelling MPE effect. This study may provide scientific basis for guiding the clinical application of SZT.
Collapse
Affiliation(s)
- Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhen-Lan Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Di Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| | - Qian-Qian Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Si-Jia Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Zhou DC, Zheng G, Jia LY, He X, Zhang CF, Wang CZ, Yuan CS. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne Genkwa based on the combination of efficacy coefficient method and principal component analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113683. [PMID: 33301910 DOI: 10.1016/j.jep.2020.113683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genkwa flos, as a traditional herb, is the dried flower buds of Daphne genkwa Sieb.et Zucc. It is used in traditional medicine for the treatment of cough, sore throats, edema. AIM OF THE STUDY The study aimed to explore a new mathematical method for multivariate evaluation, investigate the anti-inflammatory and anti-angiogenic activities of flavonoids in Daphne Genkwa under ex vivo conditions. MATERIALS AND METHODS The flavonoids monomers in Daphne Genkwa were separated by preparative liquid chromatography and identified by HPLC-ESI-ITMS. An in vitro inflammatory model of macrophage RAW264.7 induced by LPS and an angiogenesis model of human umbilical vein endothelial cells induced by TNF-α were established. Flavonoids were extracted and prepared for intervention to detect the amount of secretion after drug intervention to reflect the anti-inflammatory and anti-angiogenic activities of each component. In addition, a new mathematical method, which combined principal component analysis and efficacy coefficient method, was adopted in pharmacodynamic evaluation. RESULTS Fourteen flavonoids monomers were separated by preparative liquid chromatography and identified by HPLC-ESI-ITMS including H1 (hydroxygenkwanin-5-O-β-D-glucoside), H2 (apigenin-7-O-β-D-glucoside), H3 (kaempferol-3-O-β-D-glucoside), H4 (hydroxygenkwanin-5-O-β-D-primeveroside), H5 (apigenin-5-O-β-D-primeveroside), H6 (apigenin-7-O-β-D-glucuronide), H7 (luteolin-5-O-β-D-glucopyranoside), H8 (genkwain-5-O-β-D- glucoside), H9 (luteolin), H10 (Daphnodorin G), H11 (tiliroside), H12 (apigenin), H13 (3'- hydroxygenkwain) and H14 (genkwanin). We found that most of flavonoids down-regulated VCAM and MMP-3, while H1, H8, H9, H14 reduced VEGF and ICAM was only decreased by H14. CONCLUSION Genkwanin may be the most active anti-rheumatoid arthritis flavonoids in Daphne genkwa. Meanwhile, the new mathematical method used in the study provided a new direction for solving the problem of multi-index pharmacodynamic evaluation.
Collapse
Affiliation(s)
- De-Cui Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Guo Zheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Ying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xin He
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Ma T, Sun Y, Liu L, Sun J, Ma Y, Guo L, Liu Q. Optimization of extraction for diterpenoids from Euphorbia fischeriana Steud using response surface methodology and structure identification by UPLC-Q-TOF-MS. Nat Prod Res 2019; 35:2458-2462. [PMID: 31621425 DOI: 10.1080/14786419.2019.1678619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Jolkinolide A, jolkinolide B, 17-hydroxyjolkinolide A and 17-hydroxyjolkinolide B are abundant constitutes in Euphorbia Fischeriana Steud and exhibit profound bioactivities. In this study, they were selected as quality control to optimize the extraction of E. fischeriana. Response surface methodology employing Box-Behnken design was applied to test the optimal conditions for the extraction. The optimized conditions for the simultaneous extraction of four diterpenoids from E. fischeriana were: ethanol concentration 100%, extraction temperature 74 °C and extraction time 2.0 h. The extraction contents for jolkinolide A, jolkinolide B, 17-hydroxyjolkinolide A and 17-hydroxyjolkinolide B were 0.1763, 0.9643, 0.4245 and 2.8189 mg/g. The extract obtained under the optimal conditions was injected into UPLC-Q-TOF-MS system. Fifty-one peaks were identified. Two peaks were tentatively identified as new compounds. The compounds were diterpenoids, fatty oil, phenolics and others.
Collapse
Affiliation(s)
- Tiancheng Ma
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Sun
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Lei Liu
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jia Sun
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yukun Ma
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Lina Guo
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- Experiment Center of Natural Product Chemistry, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
11
|
Li H, Tan L, Zhang JW, Chen H, Liang B, Qiu T, Li QS, Cai M, Zhang QH. Quercetin is the Active Component of Yang-Yin-Qing-Fei-Tang to Induce Apoptosis in Non-Small Cell Lung Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:879-893. [PMID: 31179723 DOI: 10.1142/s0192415x19500460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yang-Yin-Qing-Fei-Tang (YYQFT) is a well-known traditional Chinese medicine used in the treatment of chronic obstructive pulmonary emphysema, bronchitis, cytomegaloviral pneumonia, but the mechanisms of the medicine are not clear. This study aimed to identify the active components of YYQFT and elucidate the underlying mechanism on non-small cell lung cancer. First, YYQFT was extracted with different solvents, and then the most effective extract was determined by assessing their effects on non-small cell lung cancer cell growth. Second, several active compounds from YYQFT were identified, and quercetin was the one of the important active ingredients. Subsequently, the in vivo antitumor activity of quercetin was confirmed in a lung cancer xenograft model in mice. 200 μ g/mL quercetin significantly reduced tumor volume without affecting body weight of the mice. Furthermore, induction of apoptosis by quercetin was detected in tumor tissues treated with quercetin. Multiple apoptosis related genes including p53, Bax and Fas were upregulated by quercetin in tumor tissue and the ratio of Bax/Bcl-2 was increased accordingly. Our results demonstrated that quercetin, as the main effective component of the YYQFT, has potent inhibitory activity on non-small cell lung cancer by regulating the ratio of Bax/Bcl-2.
Collapse
Affiliation(s)
- Hong Li
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Ling Tan
- † School of Pharmaceutical Sciences, Chongqing University, Chongqing 401311, P. R. China.,‡ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401311, P. R. China
| | - Jia-Wei Zhang
- ‡ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401311, P. R. China
| | - Hong Chen
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Bing Liang
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Ting Qiu
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Qing-Song Li
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Min Cai
- * Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P. R. China
| | - Qi-Hui Zhang
- ‡ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401311, P. R. China
| |
Collapse
|
12
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
13
|
Chen YY, Tang YP, Shang EX, Zhu ZH, Tao WW, Yu JG, Feng LM, Yang J, Wang J, Su SL, Zhou H, Duan JA. Incompatibility assessment of Genkwa Flos and Glycyrrhizae Radix et Rhizoma with biochemical, histopathological and metabonomic approach. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:222-232. [PMID: 30339979 DOI: 10.1016/j.jep.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As recorded in traditional Chinese medicine (TCM) theory, Genkwa Flos (YH) and Glycyrrhizae Radix et Rhizoma (GC) compose one herbal pair of the so-called "eighteen incompatible medicaments", which indicate pairs of herbs that are mutually incompatible and that theoretically should not be applied simultaneously. However, the theory has been called into question due to a lack of evidence. AIMS OF STUDY In this study, the incompatibility of YH and GC was investigated based on an assessment of the toxic effects of their combination by traditional safety methods and a modern metabonomic approach. MATERIALS AND METHODS Sprague-Dawley rats were used to evaluate the subacute toxicity of YH and YH-GC. The serum, urine, and several tissues were collected for biochemical analysis, histopathological examination, and metabonomic analysis. RESULTS Rats exposed to a dose of 1.0 g/kg YH (3 times of the Chinese Pharmacopoeia maximum dose) exhibited toxicity of the heart, liver, kidney and testes, and rats exposed to a YH-GC combination (1.0 g/kg YH + 1.0 g/kg GC) exhibited similar hepatotoxicity, which aggravated renal and reproductive toxicity. Following this, a metabonomic study tentatively identified 14 potential biomarkers in the YH group and 10 potential biomarkers in the YH-GC group, and metabolic pathways were then constructed. YH disturbed the pathways of glycerophospholipid metabolism, primary bile acid biosynthesis, and sphingolipid metabolism, while YH-GC combination induced disruptions in phenylalanine, tyrosine and tryptophan biosynthesis, tyrosine metabolism, and glycerophospholipid metabolism. CONCLUSION The toxicities of YH and YH-GC combination above the Chinese Pharmacopoeia dose were obvious but different. Metabonomics combined with biochemical and histopathological methods can be applied to elucidate the toxicity mechanism of the YH-GC combination that caused liver, kidney and reproductive injuries in rats.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Gao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jing Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Zhang C, Zheng X, Ni H, Li P, Li HJ. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J Pharm Biomed Anal 2018; 159:296-304. [DOI: 10.1016/j.jpba.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/11/2023]
|
15
|
Zhang X, Mei X, Wang Z, Wu J, Liu G, Hu H, Li Q. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Docynia dcne Leaves by High-Performance Liquid Chromatography Coupled with Chemometrics Analysis. J Chromatogr Sci 2018; 56:575-581. [PMID: 29800095 DOI: 10.1093/chromsci/bmy007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Indexed: 12/19/2022]
Abstract
Docynia dcne leaf from the genus of Docynia Dcne (including three species of Docynia delavayi, Docynia indica and Docynia longiunguis.) is an important raw material of local ethnic minority tea, ethnomedicines and food supplements in southwestern areas of China. However, D. dcne leaves from these three species are usually used confusingly, which could influence the therapeutic effect of it. A rapid and effective method for the chemical fingerprint and quantitative analysis to evaluate the quality of D. dcne leaves was established. The chemometric methods, including similarity analysis, hierarchical cluster analysis and partial least-squares discrimination analysis, were applied to distinguish 30 batches of D. dcne leaf samples from these three species. The above results could validate each other and successfully group these samples into three categories which were closely related to the species of D. dcne leaves. Moreover, isoquercitrin and phlorizin were screened as the chemical markers to evaluate the quality of D. dcne leaves from different species. And the contents of isoquercitrin and phlorizin varied remarkably in these samples, with ranges of 6.41-38.84 and 95.73-217.76 mg/g, respectively. All the results indicated that an integration method of chemical fingerprint couple with chemometrics analysis and quantitative assessment was a powerful and beneficial tool for quality control of D. dcne leaves, and could be applied also for differentiation and quality control of other herbal preparations.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Institute of Food Function and Processing Application, College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, China
| | - Xueran Mei
- Institute of Food Function and Processing Application, College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, China
| | - Zhanguo Wang
- Metabonomics Synergy Innovation Laboratory, School of Medicine and Nursing, Chengdu University, Longquan, Chengdu, China
| | - Jing Wu
- Institute of Food Function and Processing Application, College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, China
| | - Gang Liu
- Institute of Food Function and Processing Application, College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, China
| | - Huiling Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, China
| | - Qijuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, China
| |
Collapse
|