1
|
De la Merced-García DS, Sánchez-Barrera Á, Hernández-Yonca J, Mancilla I, García-López G, Díaz NF, Terrazas LI, Molina-Hernández A. Increased Nuclear FOXP2 Is Related to Reduced Neural Stem Cell Number and Increased Neurogenesis in the Dorsal Telencephalon of Embryos of Diabetic Rats through Histamine H 1 Receptors. Cells 2023; 12:cells12030510. [PMID: 36766852 PMCID: PMC9914739 DOI: 10.3390/cells12030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Diabetic rat embryos have increased cortical neurogenesis and neuron maturation, and their offspring presented altered neuron polarity, lamination, and diminished neuron excitability. The FOXP2 overexpression results in higher cortical neurogenesis by increasing the transition of radial glia to the intermediate progenitor. Similarly, histamine through H1-receptor activation increases cortical neuron differentiation. Indeed, blocking the H1-receptor by the systemic administration of chlorpheniramine to diabetic pregnant rats prevents increased neurogenesis. Here, we explore the relationship between the H1-receptor and FOXP2 on embryo neurogenesis from diabetic dams. Through qRT-PCR, Western blot, immunohistofluorescence, and flow cytometry, we showed an increased FOXP2 expression and nuclear localization, a reduced Nestin expression and -positive cells number, and a higher PKCα expression in the cortical neuroepithelium of fourteen-day-old embryos from diabetic rats. Interestingly, this scenario was prevented by the chlorpheniramine systemic administration to diabetic pregnant rats at embryo day twelve. These data, together with the bioinformatic analysis, suggest that higher H1-receptor activity in embryos under high glucose increases FOXP2 nuclear translocation, presumably through PKCα phosphorylation, impairing the transition of radial glia to intermediate progenitor and increasing neuron differentiation in embryos of diabetic rats.
Collapse
Affiliation(s)
- Diana Sarahi De la Merced-García
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Ángel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. de los Barrios, Los Reyes Iztacala, Tlanepantla 54090, Mexico
| | - Juan Hernández-Yonca
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Ismael Mancilla
- Departamento de Infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Luis Ignacio Terrazas
- Departamento de Infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. de los Barrios, Los Reyes Iztacala, Tlanepantla 54090, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
- Correspondence:
| |
Collapse
|
2
|
Xu Y, Deng T, Xie L, Qin T, Sun T. Neuroprotective effects of hawthorn leaf flavonoids in
Aβ
25–35
‐induced
Alzheimer's disease model. Phytother Res 2022; 37:1346-1365. [PMID: 36447359 DOI: 10.1002/ptr.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aβ in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aβ25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aβ25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.
Collapse
Affiliation(s)
- Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| |
Collapse
|
3
|
Lin C, Liu Z, Chen J, Wang X, Zhang R, Wu L, Li L. Integrate UPLC-QE-MS/MS and Network Pharmacology to Investigate the Active Components and Action Mechanisms of Tea Cake Extract for Treating Cough. Biomed Chromatogr 2022; 36:e5442. [PMID: 35781817 DOI: 10.1002/bmc.5442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Investigate the active components and mechanisms of tea cake extract (TCE) for treating cough. METHODS The components of TCE were tentatively identified by ultrahigh performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS), whose targets were obtained from databases of Swiss Target Prediction and traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). Cough-related targets were retrieved from databases of Gene cards and Online Mendelian Inheritance in Man (OMIM). After intersection targets were obtained, enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was performed, and protein-protein interactions (PPI) network and active compound-intersection target-KEGG pathway network was constructed. Core active compounds and their targets were validated with molecular docking. RESULTS Total of 78 compounds were identified from TCE, including 24 flavonoids, 17 phenolic acids, 10 alkaloids, 7 organic acids, 5 triterpenes, 5 amino acids, 5 coumarins, 3 carbohydrates, 1 anthraquinone and 1 other. 347 intersection targets were obtained. The top 5 GO terms with most significant P-values were response to oxygen-containing compound, response to organic substance, response to chemical, cellular response to chemical stimulus, and regulation of biological quality. The top 5 KEGG pathways with most significant P-values were: PI3K-Akt signaling pathway, lipid and atherosclerosis, human cytomegalovirus infection, fluid shear stress and atherosclerosis, and proteoglycans in cancer. The top 5 core active compounds were: quercetin, genistein, luteolin, kaempferol and emodin. The top 5 core targets were: protein kinase B (Akt1), prostaglandin-endoperoxide synthase 2 (PTGS2), mitogen-activated protein kinase 1/3 (MAPK1/3), and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1). The top 5 core active compounds could stably bind to their targets with LibDockScore higher than 100. CONCLUSION TCE plays the antitussive role by multiple components and targets. Core targets (AKT1, MAPK1, MAPK3 and PIK3R1) and core components (quercetin, genistein, luteolin and kaempferol) involved in the PI3K-Akt signaling pathway are worth more attention in subsequent validation experiments.
Collapse
Affiliation(s)
- Cheng Lin
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jia Chen
- National Institutes for Food and Drug Control, Beijing, China
| | - Xuanxuan Wang
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Rui Zhang
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longhuo Wu
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linfu Li
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Yenil N, Yemiş F, Sabikoglu İ, Memon N, Güler A. Comparative Analyses of Few West Turkish Varieties of Pomegranate ( Punica granatum L.) Peels for Phenolic Content Using Liquid Chromatography. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nilgün Yenil
- Chemistry Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - Fadim Yemiş
- Chemistry Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - İsrafil Sabikoglu
- Physic Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Ali Güler
- Food Technologies Department, Viticulture Research Institute, Manisa, Turkey
| |
Collapse
|
5
|
Liu Y, Luo X, Wang M, Xia Z, Huang Y. Microorganisms as Bio-SPE Materials for Extraction of Pharmaceutical Drugs: Mechanism of Extraction. Anal Chem 2021; 93:7665-7672. [PMID: 34004111 DOI: 10.1021/acs.analchem.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In solid-phase extraction (SPE), the extraction materials depend on the physicochemical interactions to obtain the target analytes from complex systems. However, many matrix interferences existing in real samples influence the extraction efficiency through these common interactions. Therefore, extraction materials based on more special interactions for biological systems need to be developed. In this work, live microorganisms including Escherichia coli and Staphylococcus aureus were considered as the potential biological SPE (bio-SPE) materials with their biological functions in the live state. To study the enrichment and selectivity of the bio-SPE, four antibacterial drugs and two non-antibacterial drugs were employed as the target analytes. The enrichment factor (EF) was used as the evaluation index. The results showed that when using chlorpheniramine (CPM) and ofloxacin (OFLO), the enrichment capacity of E. coli was better than that of S. aureus. When extracting a single analyte, the enrichment ability of E. coli for CPM was significantly higher than other analytes, and the EF was 8.5. In a mixture solution of antibacterial analytes, OFLO could be enriched mostly by E. coli. However, in the mixture solution of antibacterial and non-antibacterial analytes, CPM was enriched more than that of antibacterial analytes. In real rat plasma, bio-SPE using live E. coli could obviously extract CPM, while traditional liquid-liquid extraction could not. The confocal microscopy results showed that the extraction mechanism may not only depend on the surface adsorption of bacteria with analytes but also on the uptake into bacteria. This provides a valuable basis for the development of more biological separation materials based on biological interactions.
Collapse
Affiliation(s)
- Yi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xinxin Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
6
|
Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133:110985. [DOI: 10.1016/j.biopha.2020.110985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
|
7
|
Shi F, Xie L, Lin Q, Tong C, Fu Q, Xu J, Xiao J, Shi S. Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry. Food Chem 2020; 312:126042. [PMID: 31911351 DOI: 10.1016/j.foodchem.2019.126042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Fangying Shi
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Lianwu Xie
- College of Sciences; College of Food Science and Engineering; Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Qinlu Lin
- College of Sciences; College of Food Science and Engineering; Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Chaoying Tong
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Qiachi Fu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuyun Shi
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
8
|
Simultaneous determination of four flavonoids in rat plasma after oral administration of Malus hupehensis (Pamp.) Rehd. extracts by UPLC‐MS/MS and its application to a pharmacokinetics study. J Pharm Biomed Anal 2020; 177:112869. [DOI: 10.1016/j.jpba.2019.112869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/11/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
|
9
|
Feminus JJ, Manikandan R, Narayanan SS, Deepa PN. Determination of gallic acid using poly(glutamic acid): graphene modified electrode. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1587-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|