1
|
Yin X, Sousa LS, André B, Adams E, Van Schepdael A. Quantification of amino acids secreted by yeast cells by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2400318. [PMID: 38982556 DOI: 10.1002/jssc.202400318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.
Collapse
Affiliation(s)
- Xiongwei Yin
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Luís Santos Sousa
- Molecular Physiology of the Cell Lab, Biopark - IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell Lab, Biopark - IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Mizuno H, Murakami N. Multi-omics Approach in Kidney Transplant: Lessons Learned from COVID-19 Pandemic. CURRENT TRANSPLANTATION REPORTS 2023; 10:173-187. [PMID: 38152593 PMCID: PMC10751044 DOI: 10.1007/s40472-023-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 12/29/2023]
Abstract
Purpose of Review Multi-omics approach has advanced our knowledge on transplantation-associated clinical outcomes, such as acute rejection and infection, and emerging omics data are becoming available in kidney transplant and COVID-19. Herein, we discuss updated findings of multi-omics data on kidney transplant outcomes, as well as COVID-19 and kidney transplant. Recent Findings Transcriptomics, proteomics, and metabolomics revealed various inflammation pathways associated with kidney transplantation-related outcomes and COVID-19. Although multi-omics data on kidney transplant and COVID-19 is limited, activation of innate immune pathways and suppression of adaptive immune pathways were observed in the active phase of COVID-19 in kidney transplant recipients. Summary Multi-omics analysis has led us to a deeper exploration and a more comprehensive understanding of key biological pathways in complex clinical settings, such as kidney transplantation and COVID-19. Future multi-omics analysis leveraging multi-center biobank collaborative will further advance our knowledge on the precise immunological responses to allograft and emerging pathogens.
Collapse
Affiliation(s)
- Hiroki Mizuno
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
- Dvision of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
| | - Naoka Murakami
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
| |
Collapse
|
3
|
Németh K, Szatmári I, Tőkési V, Szabó PT. Application of Normal-Phase Silica Column in Hydrophilic Interaction Liquid Chromatography Mode for Simultaneous Determination of Underivatized Amino Acids from Human Serum Samples via Liquid Chromatography-Tandem Mass Spectrometry. Curr Issues Mol Biol 2023; 45:9354-9367. [PMID: 38132432 PMCID: PMC10741747 DOI: 10.3390/cimb45120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
In neonatal screening, amino acids have a significant diagnostic role. Determination of their values may identify abnormal conditions. Early diagnosis and continuous monitoring of amino acid disorders results in a better disease outcome. An easy and simple LC-MS/MS method was developed for the quantitation of underivatized amino acids. Amino acids were separated using a normal-phase HPLC column having a totally porous silica stationary phase and using classical reversed-phase eluents. Mass spectrometry in multiple reaction monitoring mode was used for the analysis, providing high selectivity and sensitivity. A standard addition calibration model was applied for quantitation using only one isotope-labeled internal standard for all amino acids. Five calibration points were used for quantitation, and the method was successfully validated. The slopes of the calibration curves of the individual amino acids in parallel measurements were found to be similar. Since the measured slopes were reproducible, one serum sample could represent every series of serum samples of a given day. The method was tested on human serum samples and adequate results were obtained. This new method can be easily applied in clinical laboratories.
Collapse
Affiliation(s)
- Krisztina Németh
- MS Metabolomics Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter u. 1/A, H-1117 Budapest, Hungary
| | - Ildikó Szatmári
- Department of Pediatrics, Semmelweis University, Bókay János u. 54, H-1083 Budapest, Hungary
| | - Viktória Tőkési
- Department of Pediatrics, Semmelweis University, Bókay János u. 54, H-1083 Budapest, Hungary
| | - Pál Tamás Szabó
- MS Metabolomics Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| |
Collapse
|
4
|
Artymowicz M, Struck-Lewicka W, Wiczling P, Markuszewski M, Markuszewski MJ, Siluk D. Targeted quantitative metabolomics with a linear mixed-effect model for analysis of urinary nucleosides and deoxynucleosides from bladder cancer patients before and after tumor resection. Anal Bioanal Chem 2023; 415:5511-5528. [PMID: 37460824 PMCID: PMC10444683 DOI: 10.1007/s00216-023-04826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
In the present study, we developed and validated a fast, simple, and sensitive quantitative method for the simultaneous determination of eleven nucleosides and deoxynucleosides from urine samples. The analyses were performed with the use of liquid chromatography coupled with triple quadrupole mass spectrometry. The sample pretreatment procedure was limited to centrifugation, vortex mixing of urine samples with a methanol/water solution (1:1, v/v), evaporation and dissolution steps. The analysis lasted 20 min and was performed in dynamic multiple reaction monitoring mode (dMRM) in positive polarity. Process validation was conducted to determine the linearity, precision, accuracy, limit of quantification, stability, recovery and matrix effect. All validation procedures were carried out in accordance with current FDA and EMA regulations. The validated method was applied for the analysis of 133 urine samples derived from bladder cancer patients before tumor resection and 24 h, 2 weeks, and 3, 6, 9, and 12 months after the surgery. The obtained data sets were analyzed using a linear mixed-effect model. The analysis revealed that concentration level of 2-methylthioadenosine was decreased, while for inosine, it was increased 24 h after tumor resection in comparison to the preoperative state. The presented quantitative longitudinal study of urine nucleosides and deoxynucleosides before and up to 12 months after bladder tumor resection brings additional prospective insight into the metabolite excretion pattern in bladder cancer disease. Moreover, incurred sample reanalysis was performed proving the robustness and repeatability of the developed targeted method.
Collapse
Affiliation(s)
- Małgorzata Artymowicz
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marcin Markuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
5
|
Joncquel M, Labasque J, Demaret J, Bout MA, Hamroun A, Hennart B, Tronchon M, Defevre M, Kim I, Kerckhove A, George L, Gilleron M, Dessein AF, Zerimech F, Grzych G. Targeted Metabolomics Analysis Suggests That Tacrolimus Alters Protection against Oxidative Stress. Antioxidants (Basel) 2023; 12:1412. [PMID: 37507951 PMCID: PMC10376759 DOI: 10.3390/antiox12071412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tacrolimus (FK506) is an immunosuppressant that is experiencing a continuous rise in usage worldwide. The related side effects are known to be globally dose-dependent. Despite numerous studies on FK506, the mechanisms underlying FK506 toxicity are still not well understood. It is therefore essential to explore the toxicity mediated by FK506. To accomplish this, we conducted a targeted metabolomic analysis using LC-MS on the plasma samples of patients undergoing FK506 treatment. The aim was to identify any associated altered metabolic pathway. Another anti-calcineurin immunosuppressive therapy, ciclosporin (CSA), was also studied. Increased plasma concentrations of pipecolic acid (PA) and sarcosine, along with a decrease in the glycine/sarcosine ratio and a tendency of increased plasma lysine was observed in patients under FK506 compared to control samples. Patients under CSA do not show an increase in plasma PA compared to the control samples, which does not support a metabolic link between the calcineurin and PA. The metabolomics changes observed in patients under FK506 highlight a possible link between FK506 and the action of an enzyme involved in both PA and sarcosine catabolism and oxidative pathway, the Peroxisomal sarcosine oxidase (PIPOX). Moreover, PA could be investigated as a potential biomarker of early nephrotoxicity in the follow-up of patients under FK506.
Collapse
Affiliation(s)
- Marie Joncquel
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Julie Labasque
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Julie Demaret
- CHU Lille, Centre de Biologie Pathologie Génétique, Institut d'Immunologie, F-59000 Lille, France
| | - Marie-Adélaïde Bout
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Aghilès Hamroun
- UMR1167 RIDAGE, Institut Pasteur de Lille, Inserm, Université de Lille, CHU Lille, F-59000 Lille, France
| | - Benjamin Hennart
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Toxicologie et Génopathies, F-59000 Lille, France
| | - Mathieu Tronchon
- CHU Lille, Centre de Biologie Pathologie Génétique, Institut d'Immunologie, F-59000 Lille, France
| | - Magali Defevre
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Isabelle Kim
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Alain Kerckhove
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Laurence George
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Mylène Gilleron
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Anne-Frédérique Dessein
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| | - Farid Zerimech
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
- Institut Pasteur de Lille, Université de Lille, ULR 4483, IMPECS, F-59000 Lille, France
| | - Guillaume Grzych
- CHU Lille, Centre de Biologie Pathologie Génétique, Service Hormonologie Métabolisme Nutrition Oncologie, F-59000 Lille, France
| |
Collapse
|
6
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Gao Z, Zhou W, Lv X, Wang X. Metabolomics as a Critical Tool for Studying Clinical Surgery. Crit Rev Anal Chem 2023; 54:2245-2258. [PMID: 36592066 DOI: 10.1080/10408347.2022.2162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolomics enables the analysis of metabolites within an organism, which offers the closest direct measurement of the physiological activity of the organism, and has advanced efforts to characterize metabolic states, identify biomarkers, and investigate metabolic pathways. A high degree of innovation in analytical techniques has promoted the application of metabolomics, especially in the study of clinical surgery. Metabolomics can be employed as a clinical testing method to maximize therapeutic outcomes, and has been applied in rapid diagnosis of diseases, timely postoperative monitoring, prognostic assessment, and personalized medicine. This review focuses on the use of mass spectrometry and nuclear magnetic resonance-based metabolomics in clinical surgery, including identifying metabolic changes before and after surgery, finding disease-associated biomarkers, and exploring the potential of personalized therapy. Challenges and opportunities of metabolomics in organ transplantation are also discussed, with a particular emphasis on metabolomics in donor organ evaluation and protection, prognostic outcome prediction, as well as postoperative adverse reaction monitoring. In the end, current limitations of metabolomics in clinical surgery and future research directions are presented.
Collapse
Affiliation(s)
- Zhenye Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxiu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaoyuan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
8
|
Fernández-del-Campo-García MT, Casas-Ferreira AM, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL. Rapid and reliable analysis of underivatized amino acids in urine using tandem mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Feng L, Liang X, Mao X, Wan H, Wu Y, Han Q. Study on the preparation of molecular imprinted polymer for analysis of N-phenylglycine in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122918. [PMID: 34537499 DOI: 10.1016/j.jchromb.2021.122918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/15/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
N-phenylglycine (NPG) in human urine could be an important biomarker for predicting cancers, but its detection has difficulty due to its low abundance in urine. Herein, we report a molecular imprinted polymer (MIP) method to efficiently recognize NPG in urine. The MIP was prepared by precipitation polymerization, adopting NPG as the template, acrylamide (AM) as functional monomer, trimethylpropane triacrylate (TRIM) as crosslinking agent, and acetonitrile as porogen. The specificity and selectivity of MIP towards NPG in human urine were determined by comparing MIP's adsorption to the NPG and N-crotonylglycine (NTG) under the same conditions. The result β = QMIP-NPG/QMIP-NTG = 4.7 indicated the satisfactory specificity and selectivity. Parameters affecting the extraction efficiency were further optimized. Under the optimum conditions, the linear range, limit of detection, and limit of quantification of NPG were 0.5-100 mg∙L-1, 1.6 × 10-2 mg∙L-1, and 5.5 × 10-2 mg∙L-1, respectively. Recoveries of NPG in human urine were in the range of 84.7-100.0% with RSDS of 3.8-10.8%. The developed method demonstrated superior selectivity to the target analyte, which can be applied to separate and enrich the NPG from urine samples.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xianyu Liang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hao Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yan Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
10
|
Akyol O, Tessier K, Akyol S. Accuracy and uniformity of the nomenclature of biogenic amines and polyamines in metabolomics studies: A preliminary study. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:441-445. [PMID: 33682332 DOI: 10.1002/bmb.21497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/09/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Metabolomics is one of the newest areas in biochemistry dedicated to investigating small biomolecules in biofluids, tissues, and cells. Cutting edge instruments used in metabolomics studies make it possible to identify thousands of biomolecules and determine their interactions with biological networks. This tremendous area has increased the significance of accurate chemical nomenclature of compounds. Therefore, the classification of the organic molecules has become one of the most important issues in the field. Biogenic amines are nitrogenous compounds of low molecular weight formed by the decarboxylation of amino acids or by the amination and the transamination of aldehydes and ketones during normal metabolic processes. This letter covers the topic of nomenclature with respect to the current usage of biogenic amines in scientific literature. We use metabolomics as an example of field reporting data on trace levels of molecules that may be miscategorized in primary literature. We suggest that the incorrect classification of molecules will influence science education adversely because resources used for teaching are drawn from primary literature references that may contain errors.
Collapse
Affiliation(s)
- Omer Akyol
- Department of Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Kylie Tessier
- Michigan Math and Science Academy, Warren, Michigan, USA
| | - Sumeyya Akyol
- Beaumont Health System-Beaumont Research Institute, Royal Oak, Michigan, USA
| |
Collapse
|
11
|
An Z, Shi C, Li P, Liu L. Stability of amino acids and related amines in human serum under different preprocessing and pre-storage conditions based on iTRAQ ®-LC-MS/MS. Biol Open 2021; 10:bio.055020. [PMID: 33563610 PMCID: PMC7928226 DOI: 10.1242/bio.055020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amino acid analysis or metabonomics requires large-scale sample collection, which makes sample storage a critical consideration. However, functional amino acids are often neglected in metabolite stability studies because of the difficulty in detecting and accurately quantifying them with most analysis methods. Here, we investigated the stability of amino acids and related amines in human serum following different preprocessing and pre-storage procedures. Serum samples were collected and subjected to three storage conditions; cold storage (4°C), room temperature storage (22°C), and freezing (−80°C). The concentration of amino acids and related amines were quantified using iTRAQ®-LC-MS/MS with isobaric tagging reagents. Approximately 54.84%, 58.06%, and 48.39% of detectable and target analytes were altered at the 4°C condition, 22°C condition, and when subjected to freeze-thaw cycles, respectively. Some amino acids which are unstable and relatively stable were found. Our study provides detailed amino acid profiles in human serum and suggests pre-treatment measures that could be taken to improve stability. Summary: We investigated the stability of amino acids in serum samples that underwent prolonged storage at 4°C and 22°C, and repeated freeze-thaw cycles at −80°C using stable isotope iTRAQ labeling and liquid chromatography tandem mass spectrometry.
Collapse
Affiliation(s)
- Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Chen Shi
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Pengfei Li
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| |
Collapse
|
12
|
Roca M, Alcoriza MI, Garcia-Cañaveras JC, Lahoz A. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial. Anal Chim Acta 2020; 1147:38-55. [PMID: 33485584 DOI: 10.1016/j.aca.2020.12.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolomics has become an invaluable tool for both studying metabolism and biomarker discovery. The great technical advances in analytical chemistry and bioinformatics have considerably increased the number of measurable metabolites, yet an important part of the human metabolome remains uncovered. Among the various MS hyphenated techniques available, LC-MS stands out as the most used. Here, we aimed to show the capabilities of LC-MS to uncover part of the metabolome and how to best proceed with sample preparation and LC to maximise metabolite detection. The analyses of various open metabolite databases served us to estimate the size of the already detected human metabolome, the expected metabolite composition of most used human biospecimens and which part of the metabolome can be detected when LC-MS is used. Based on an extensive review and on our experience, we have outlined standard procedures for LC-MS analysis of urine, cells, serum/plasma, tissues and faeces, to guide in the selection of the sample preparation method that best matches with one or more LC techniques in order to get the widest metabolome coverage. These standard procedures may be a useful tool to explore, at a glance, the wide spectrum of possibilities available, which can be a good starting point for most of the LC-MS metabolomic studies.
Collapse
Affiliation(s)
- Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Maria Isabel Alcoriza
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain; Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
| |
Collapse
|
13
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
14
|
Abstract
Metabolomics is the comprehensive study of small-molecule metabolites. Obtaining a wide coverage of the metabolome is challenging because of the broad range of physicochemical properties of the small molecules. To study the compounds of interest spectroscopic (NMR), spectrometric (MS) and separation techniques (LC, GC, supercritical fluid chromatography, CE) are used. The choice for a given technique is influenced by the sample matrix, the concentration and properties of the metabolites, and the amount of sample. This review discusses the most commonly used analytical techniques for metabolomic studies, including their advantages, drawbacks and some applications.
Collapse
|
15
|
Liu J, Zuo M, Low SS, Xu N, Chen Z, Lv C, Cui Y, Shi Y, Men H. Fuzzy Evaluation Output of Taste Information for Liquor Using Electronic Tongue Based on Cloud Model. SENSORS 2020; 20:s20030686. [PMID: 32012652 PMCID: PMC7038490 DOI: 10.3390/s20030686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
As a taste bionic system, electronic tongues can be used to derive taste information for different types of food. On this basis, we have carried forward the work by making it, in addition to the ability of accurately distinguish samples, be more expressive by speaking evaluative language like human beings. Thus, this paper demonstrates the correlation between the qualitative digital output of the taste bionic system and the fuzzy evaluation language that conform to the human perception mode. First, through principal component analysis (PCA), backward cloud generator and forward cloud generator, two-dimensional cloud droplet groups of different flavor information were established by using liquor taste data collected by electronic tongue. Second, the frequency and order of the evaluation words for different flavor of liquor were obtained by counting and analyzing the data appeared in the artificial sensory evaluation experiment. According to the frequency and order of words, the cloud droplet range corresponding to each word was calculated in the cloud drop group. Finally, the fuzzy evaluations that originated from the eight groups of liquor data with different flavor were compared with the artificial sense, and the results indicated that the model developed in this work is capable of outputting fuzzy evaluation that is consistent with human perception rather than digital output. To sum up, this method enabled the electronic tongue system to generate an output, which conforms to human's descriptive language, making food detection technology a step closer to human perception.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
- Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30602, USA
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China;
- Correspondence: (J.L.); (H.M.); Tel.: +86-432-6480-7283 (J.L. & H.M.); Fax: +86-432-6480-6201 (J.L. & H.M.)
| | - Mingxu Zuo
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Ning Xu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Zhiqing Chen
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Chuang Lv
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Ying Cui
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Yan Shi
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
| | - Hong Men
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (M.Z.); (N.X.); (Z.C.); (C.L.); (Y.C.); (Y.S.)
- Correspondence: (J.L.); (H.M.); Tel.: +86-432-6480-7283 (J.L. & H.M.); Fax: +86-432-6480-6201 (J.L. & H.M.)
| |
Collapse
|
16
|
Ferré S, González-Ruiz V, Guillarme D, Rudaz S. Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121819. [PMID: 31704619 DOI: 10.1016/j.jchromb.2019.121819] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes the analytical methods that have been developed over the years to tackle the high polarity and non-chromophoric nature of amino acids (AAs). First, the historical methods are briefly presented, with a strong focus on the use of derivatization reagents to make AAs detectable with spectroscopic techniques (ultraviolet and fluorescence) and/or sufficiently retained in reversed phase liquid chromatography. Then, an overview of the current analytical strategies for achiral separation of AAs is provided, in which mass spectrometry (MS) becomes the most widely used detection mode in combination with innovative liquid chromatography or capillary electrophoresis conditions to detect AAs at very low concentration in complex matrixes. Finally, some future trends of AA analysis are provided in the last section of the review, including the use of supercritical fluid chromatography (SFC), multidimensional liquid chromatography and electrophoretic separations, hyphenation of ion exchange chromatography to mass spectrometry, and use of ion mobility spectrometry mass spectrometry (IM-MS). Various application examples will also be presented throughout the review to highlight the benefits and limitations of these different analytical approaches for AAs determination.
Collapse
Affiliation(s)
- Sabrina Ferré
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
17
|
Meddeb M, Oueslati H, Ksontini S, Omar S, Bahri S. Contrôle qualité des mélanges pour nutrition parentérale pédiatriques : validation de la méthode de dosage du sodium et du potassium. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 77:85-91. [DOI: 10.1016/j.pharma.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
|