1
|
Ma Y, Zhang C, Li J, Xiong J, Xiao BL. Inhibitory mechanism on tyrosinase activity of flavonoids from flower buds of Sophora japonica L. Heliyon 2024; 10:e38252. [PMID: 39386772 PMCID: PMC11462347 DOI: 10.1016/j.heliyon.2024.e38252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The flower buds of Sophora japonica L. (FBSJ) have long been applied as Traditional Chinese Medicine (TCM) and functional food in East Asia. In this study, extracts of FBSJ from 11 different locations were analyzed using the HPLC method to establish their HPLC fingerprints. By determining the IC50 on tyrosinase activity, it was discovered that the extract from Kunming, Yunnan Province exhibited the strongest inhibitory activity. Further analysis, including partial least squares regression coefficient analysis and grey correlation analysis, regarded kaempferol, isorhamnetin, and quercetin as the compounds with significant tyrosinase inhibitory activities. To understand the inhibition mechanism of tyrosinase activity, various analytical techniques such as enzymatic kinetic analysis, fluorescence quenching, circular dichroism (CD), molecular docking, and molecular dynamics simulation were employed. The results revealed that quercetin, isorhamnetin, and kaempferol exhibited higher inhibitory activity and binding energy compared with kojic acid, indicating their potential value as natural tyrosinase inhibitors. This research provides a solid theoretical foundation for studying the application and mechanism of flavonoids against tyrosinase in FBSJ.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Chaoyang Zhang
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jinlin Li
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jiayan Xiong
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Lv Z, Ouyang H, Zuo F, Ge M, Wu M, Zhao L, Zhu Y, Miao X, Bai Y, Chang Y, He J. Spectrum-effect relationship study between ultra-high-performance liquid chromatography fingerprints and anti-hepatoma effect in vitro of Cnidii Fructus. Biomed Chromatogr 2024; 38:e5847. [PMID: 38368628 DOI: 10.1002/bmc.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Cnidii Fructus, derived from the dried ripe fruit of Cnidium monnieri (L.) Cuss, has the effect of warming kidneys and invigorating Yang. This study established the spectrum-effect relationships between ultra-high-performance liquid chromatography (UHPLC) fingerprints and the antitumor activities of Cnidii Fructus on human hepatocellular carcinoma (HepG2) cells. In UHPLC fingerprints, 19 common peaks were obtained, and 17 batches of herbs had similarity >0.948. In Cell Counting Kit-8 (CCK-8) test, 17 batches of Cnidii Fructus extract significantly inhibited the proliferation of HepG2 cells to different degrees, showing different half-maximal inhibitory concentration (IC50) values. Furthermore, gray correlation analysis, Pearson's analysis, and orthogonal partial least squares discriminant analysis were performed to screen out eight components. The analysis of mass spectrum data and a comparison with standards revealed that the eight components were methoxsalen, isopimpinellin, osthenol, imperatorin, osthole, ricinoleic acid, linoleic acid, and oleic acid. The verification experiments by testing single compounds indicated that these eight compounds were the major anti-hepatoma compounds in Cnidii Fructus. This work provides a model combining UHPLC fingerprints and antitumor activities to study the spectrum-effect relationships of Cnidii Fructus, which can be used to determine the principal components responsible for the bioactivity.
Collapse
Affiliation(s)
- Zhenguo Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanjiao Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minglei Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxuan Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinxin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023:1-22. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chen Z, Vong CT, Zhang T, Yao C, Wang Y, Luo H. Quality evaluation methods of chinese medicine based on scientific supervision: recent research progress and prospects. Chin Med 2023; 18:126. [PMID: 37777788 PMCID: PMC10543864 DOI: 10.1186/s13020-023-00836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Traditional Chinese medicine (TCM) is increasingly getting attention worldwide, as it has played a very satisfactory role in treating COVID-19 during these past 3 years, and the Chinese government highly supports the development of TCM. The therapeutical theory and efficacies of Chinese medicine (CM) involve the safety, effectiveness and quality evaluation of CM, which requires a standard sound system. Constructing a scientific and reasonable CM quality and safety evaluation system, and establishing high-quality standards are the key cores to promote the high-quality development of CM. Through the traditional quality control methods of CM, the progress of the Q-marker research and development system proposed in recent years, this paper integrated the research ideas and methods of CM quality control and identified effective quality parameters. In addition, we also applied these effective quality parameters to create a new and supervision model for the quality control of CM. In conclusion, this review summarizes the methods and standards of quality control research used in recent years, and provides references to the quality control of CM and how researchers conduct quality control experiments.
Collapse
Affiliation(s)
- Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin, 300462, People's Republic of China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, 530001, People's Republic of China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
6
|
Component-Effect Relationship between HPLC Fingerprints and Lipid-Lowering Activity of Buyang Huanwu Decoction. Int J Anal Chem 2022; 2022:9195335. [PMID: 36199444 PMCID: PMC9529526 DOI: 10.1155/2022/9195335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Buyang Huanwu Decoction (BHD) has lipid-lowering and antioxidant effects. In this study, HPLC was used to establish the fingerprint of extracts from different polar parts of BHD. Through the L02 cell lipid deposition model induced by oleic acid, extracts from different polar parts of BHD were administered for treatment. Oil red O staining, TG detection, and MDA detection were used to determine lipid deposition and antioxidant activity. The component-effect relationship is established by using grey relational analysis and PLSR analysis. The results showed that the extracts from different polar parts of BHD could reduce the levels of TG and MDA. The grey relational analysis showed that the peaks that contributed greatly to the reduction of TG and MDA were peaks 3, 16, 14, 10, 1, 15, 2, and 11, respectively. Peaks 1, 4, 9, 10, 14, 16, and 17 could reduce TG and MDA through PLSR analysis. According to the results of grey relational analysis and PLSR analysis, peaks 1, 10, 14, and 16 may have good lipid-lowering and antioxidant effects. This study provides a certain preliminary basis for follow-up research on lipid-lowering drugs.
Collapse
|
7
|
Qi J, Zhang Q, Li L, Huang Q, Yao M, Wang N, Peng D. Spectrum-effect relationship between UPLC-Q-TOF-MS fingerprint and anti-AUB effect of Clinopodium chinense (Benth.) O. Kuntze. J Pharm Biomed Anal 2022; 217:114828. [DOI: 10.1016/j.jpba.2022.114828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
|
8
|
Du W, Zhu W, Ge W, Li C. Research on the effect of spleen-invigorating and anti-swelling active ingredients in crude and processed coix seed based on Spectrum - Effects relationship combined with chemometrics. J Pharm Biomed Anal 2021; 205:114350. [PMID: 34507270 DOI: 10.1016/j.jpba.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Coix seed (CS) is the dry mature seed kernel of Coix lacrma-jobi L. var. mayuen (Roman.) Stapf, which has the effect of spleen-invigorating and anti-swelling. However, research reports on the main active ingredients of CS were minimal. The purpose of this study was to find the main active ingredients that affect the efficacy of CS to invigorate the spleen and reduce swelling through the spectrum-effect relationship, combined with chemometrics, grey relational analysis (GRA) and entropy method, and to compare the differences between the effects of crude and processed CS. First of all, the HPLC-ELSD method was used to establish the chromatographic fingerprint of CS, and 12 batches of CS samples were analyzed through chemometrics in this study. Then, we studied the effect of spleen-invigorating and anti-swelling in CS. Finally, through grey relational analysis and entropy method, the spectrum-effect relationship between the chromatographic fingerprint and the seven pharmacodynamic effect indexes was studied. The results showed that the main pharmacologically active ingredients were 1,3-Dioleoyl-2-palmitoylglycerol (peak 8), 1,2-dilinoleoyl-3-oleoyl-rac-glycerol (peak 2), 1,3-Dipalmitoyl-2-Linolein (peak 5), 1,2-Dilinoleoyl-3-palmitoyl-rac-glycerol (peak 3), 1,2-Dioleoyl-3-linoleoyl-rac-glycerol (peak 4), and glycerol trioleate (peak 7), and the comprehensive efficacy of bran-fried CS was better than that of raw CS. In summary, we have identified the main active ingredients related to the efficacy of CS. As far as we know, this is the first time that the crude and processed CS spectrum-effect relationship has been established and compared, which provides a theoretical basis for subsequent studies on the material basis and molecular mechanism of CS pharmacodynamics.
Collapse
Affiliation(s)
- Weifeng Du
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, PR China
| | - Weihao Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Weihong Ge
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, PR China.
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 311401, PR China.
| |
Collapse
|
9
|
Gong PY, Guo YJ, Tian YS, Gu LF, Qi J, Yu BY. Reverse tracing anti-thrombotic active ingredients from dried Rehmannia Radix based on multidimensional spectrum-effect relationship analysis of steaming and drying for nine cycles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114177. [PMID: 33945856 DOI: 10.1016/j.jep.2021.114177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear. AIM OF STUDY This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components. MATERIALS AND METHODS The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluated by analyzing the length of tail thrombus (LT) and serum biochemical indicators in carrageenan-induced tail-thrombus mice. The spectrum-effect relationships were investigated by partial least squares regression (PLSR) analysis and gray correlation analysis (GRA). Finally, the active compounds were screened by spectrum-effect relationship analysis and validated in vivo, and their synergistic effects were determined by Webb's fraction multiplication method. RESULTS Six ingredients highly associated with anti-thrombotic activities were screened out by the spectrum-effect relationship analysis, of which oligosaccharides (stachyose, sucrose and raffinose) and iridoid glycosides (catalpol, leonuride and melitoside) possessed a synergistic effect on tumor necrosis factors (TNF-α), interleukin 1β (IL-1β) and plasminogen activator inhibitor 1 (PAI-1)/tissue-type plasminogen activator (t-PA) ratio in vivo with synergistic coefficient (SC) > 1. CONCLUSION The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.
Collapse
Affiliation(s)
- Pu-Yang Gong
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Yu-Jie Guo
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yu-Shan Tian
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Fei Gu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bo-Yang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Yu L, Zhang Y, Zhao X, He Y, Wan H, Wan H, Yang J. Spectrum-Effect Relationship between HPLC Fingerprints and Antioxidant Activity of Yangyin Tongnao Prescription. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6650366. [PMID: 34239758 PMCID: PMC8238629 DOI: 10.1155/2021/6650366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Yangyin Tongnao (YYTN) prescription is used as a traditional Chinese herbal formula, and it has antioxidant activity that mainly contributes in the treatment of cardiovascular and cerebrovascular diseases. However, the compounds related to its antioxidant activity are still unknown. In the present study, the fingerprints of YYTN extracts under different extraction conditions were obtained by high performance liquid chromatography (HPLC) to identify the common peaks to all the samples processed. A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay and ferric reducing antioxidant power (FRAP) assay were carried out to evaluate the antioxidant activity of the extracts. Spectrum-effect relationship between HPLC fingerprints and antioxidant activity of YYTN was assessed by Pearson product-moment correlation coefficient (PPMCC) and multiple linear regression analysis (MLRA). The results showed that peaks 5, 6, 13, 15, and 24 of the fingerprints were closely connected to antioxidant activity. Five peaks were identified: vanillic acid (P5), puerarin (P7), ferulic acid (P13), daidzein (P21), and formononetin (P23). Our study successfully established the spectrum-effect relationship between HPLC fingerprints and antioxidant activity of YYTN, which provided a general method for establishing quality standards with a combination of chromatography and antioxidant activity.
Collapse
Affiliation(s)
- Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yangyang Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xixi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
11
|
Feng Y, Teng L, Wang Y, Gao Y, Ma Y, Zhou H, Cai G, Li J. Using Spectrum-Effect Relationships Coupled with LC-TOF-MS to Screen Anti-arrhythmic Components of the Total Flavonoids in Hypericum attenuatum Extracts. J Chromatogr Sci 2021; 59:246-261. [PMID: 33306786 DOI: 10.1093/chromsci/bmaa101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Abstract
This research explored the HPLC fingerprints of Hypericum attenuatum Choisy, which has anti-arrhythmic activity. HPLC was adopted to perform a determination of chemical fingerprints of H. attenuatum specimens acquired through seven distinct sources. The anti-arrhythmic activity of each H. attenuatum sample was obtained through pharmacodynamics experiments in animals. A regression analysis and correlation analysis were utilized to calculate the relationship of the peak and pharmacological effectiveness with the identified peak. Peaks numbered 5, 7, 13 and 14 in the fingerprint were regarded as the likely anti-arrhythmic agents. The fingerprint was compared with reference standards for identification of the correlative peaks. Liquid chromatography-time-of-flight-mass spectrometry was applied to identify its structure. As a consequence, a universal model was established for the utilization of HPLC to investigate anti-arrhythmic activity and the spectrum-effect relationship among H. attenuatum. This model is available for the discovery of the major bioactive constituents of Hypericum.
Collapse
Affiliation(s)
- Yufei Feng
- Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Teng
- The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanli Wang
- Heilongjiang Nursing College, Harbin 150030, China
| | - Yanyu Gao
- Dentistry Teaching and Research Office, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuxuan Ma
- Dentistry Teaching and Research Office, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haichun Zhou
- The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guofeng Cai
- The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ji Li
- Dentistry Teaching and Research Office, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
12
|
Zhou X, Liu H, Zhang M, Li C, Li G. Spectrum-effect relationship between UPLC fingerprints and anti-lung cancer effect of Panax ginseng. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:339-346. [PMID: 32808367 PMCID: PMC8048684 DOI: 10.1002/pca.2980] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/21/2020] [Accepted: 07/27/2020] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Lung cancer has the highest mortality rate among the various types of cancer. Panax ginseng (C. A. Mey). is a popular anti-cancer herbal supplement. The quality control of ginseng is crucial to ensure its clinical efficacy. This study aimed to establish new quality control methods for ginseng and to identify its main active components responsible for lung cancer treatment. METHODS Ultra-high-performance liquid chromatography (UPLC) was used to establish fingerprints of 18 batches of ginseng. CCK-8 test was performed to evaluate the inhibitory activity of ginseng on Lewis lung cancer (LLC) cells. The spectrum-effect relationship analysis of ginseng was assessed by canonical correlation analysis (CCA) and bioactivity validation. KEY FINDINGS Six common peaks were identified and the variation coefficients were determined. The 18 batches of ginseng inhibited the proliferation of LLC cells to different degrees, showing different half maximal inhibitory concentration (IC50 ) values. Spectrum-effect relationship analysis showed that ginsenoside Ro is the main anti-proliferative constituent of LLC cell. CONCLUSIONS Spectrum-effect relationship is suitable for quality control of ginseng used for lung cancer. It is also effective in discovering the active ingredients related to the clinical efficacy of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaowei Zhou
- National Cancer Centre/National Clinical Research Centre for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haiyang Liu
- Tonghua Institute for Food and Drug ControlTonghuaChina
| | - Mingyu Zhang
- National Cancer Centre/National Clinical Research Centre for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chunyu Li
- National Cancer Centre/National Clinical Research Centre for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guohui Li
- National Cancer Centre/National Clinical Research Centre for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Zhang J, Wang D, Zhang X, Yang J, Chai X, Wang Y. Application of "spider-web" mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153273. [PMID: 32663710 DOI: 10.1016/j.phymed.2020.153273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The selection of quality control indicators in a complex system is a key scientific issue for the study of Chinese materia medica (CMM), which is directly related to its safety and efficacy. In order to scientifically understand and control the quality of CMM, quality marker (Q-marker) has been recently raised as a new concept, which provided a novel research idea for the quality control and evaluation of CMM. PURPOSE By a new and integrated "spider-web" mode, Q-markers of Xuefu Zhuyu capsule (XZC) were comprehensively uncovered, conducing to great improvement of quality control of XZC. METHODS Mainly established by three dimensions derived from six variables including content, stability and activity, "spider-web" mode was constructed to evaluate Q-marker property of candidate compounds by taking regression area of the tested compounds into account. RESULTS The candidate compounds with larger regression area were preferentially adopted as Q-markers, which should possess the satisfactorily integrated properties of content, stability and activity. Six compounds, naringin, isoliquiritin, paeoniflorin, protocatechuic acid, neohesperidin and ferulic acid, were identified and preferred as Q-markers of XZC. CONCLUSION Based on "spider-web" mode, Q-markers from Xuefu Zhuyu capsule were successfully screened, which would substantially perform quality control of XZC and prove the feasibility of "spider-web" mode in solving the selection of quality control indicators from compound formulae.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Danni Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jing Yang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Chai
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Yuefei Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
14
|
Yang L, Hou A, Sun Y, Wang S, Zhang J, Jiang H. Screening and quantifying the quality markers of DuHuo by fingerprint modeling. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1772287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Liu Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Song Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
15
|
Tan J, Liu J, Wang H, Zhang Y, Lin H, Wang Z, Si H, Zhang Y, Liu J, Li P, Sun K. Identification of blood-activating components from Xueshuan Xinmaining Tablet based on the spectrum-effect relationship and network pharmacology analysis. RSC Adv 2020; 10:9587-9600. [PMID: 35497256 PMCID: PMC9050128 DOI: 10.1039/c9ra09623j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
With the aim of identifying the active components of Xueshuan Xinmaining Tablet (XXT) and discussing the potential mechanism involved, the relationship between HPLC fingerprints and its blood-activating effect were established by multivariate statistical analysis, including gray relational analysis (GRA) and partial least squares regression analysis (PLSR). Network pharmacology was used to predict the potential mechanism based on the identified active components. GRA and PLSR analysis showed close correlation between the HPLC fingerprints and blood-activating activity, and peaks P1, P3, P11, P15, P22, P34, P36, P38 and P39 might be potential anti-blood stasis components of XXT. The pharmacological verification showed that salvianic acid A (P1), rutin (P3), ginsenoside Rg1 (P11) and Rb1 (P22), cinobufagin (P36), and tanshinone I (P38) and IIA (P39) had significant blood-activating effects. Based on these seven active compounds, network pharmacology analysis indicated that the anti-blood stasis effect of XXT might be closely related to TNF, PI3K-Akt and NF-κB signaling pathways. The spectrum-effect relationship of XXT was successfully established in this study. The blood-activating components and the anti-blood stasis mechanism were revealed and predicted. These findings could also be beneficial for an exploration of the active components of TCM.
Collapse
Affiliation(s)
- Jing Tan
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Ying Zhang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
- The First Hospital of Jilin University Changchun 130021 Jilin China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Zhongyao Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Hanrui Si
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 China
| | - Kai Sun
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| |
Collapse
|
16
|
The Spectrum–Effect Relationship Between HPLC Fingerprint and the Invigorating Blood and Dissolving Stasis Effect of Hawthorn Leaves. Chromatographia 2020. [DOI: 10.1007/s10337-020-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Quality assessment of licorice extract powder through geometric linear quantified fingerprint method combined with multicomponent quantification and chemometric analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Zou L, Lu F, Lin B, Zhou Y, Liu T, Sun Y. Stability of Alkaloids during Drying Process and Their Effect on Anticoagulating Activity of Uncariae Ramulus Cum Uncis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:7895152. [PMID: 30719373 PMCID: PMC6335766 DOI: 10.1155/2019/7895152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/26/2018] [Accepted: 11/11/2018] [Indexed: 05/26/2023]
Abstract
The drying process of Uncariae Ramulus Cum Uncis (URCU), a kind of traditional Chinese medicine, was studied in a scale dryer in laboratory at 65°C. It was observed that the alkaloids content of URCU firstly showed a tendency of increasing and then decreasing after reaching the peak at the 570th minute in the process of constant temperature drying. Moreover, the coagulation time of rabbit determined by test tubes has been adopted to study the effect imposed by the content of alkaloids on the anticoagulating activity of URCU. In addition, the software of Minitab was also utilized to fit the correlation between the content of alkaloids and the anticoagulating activity of URCU. The results obtained demonstrated that anticoagulant activities were available in both rhynchophylline and isorhynchophylline, among which the latter was the stronger one, while procoagulant activity was shown in corynoxeine. The case study can provide a useful reference for the research on drying other Chinese herbal medicines (CHMs) and further study on URCU.
Collapse
Affiliation(s)
- Lu Zou
- School of Pharmacy, Guizhou University, Guiyang, Guizhou, China
| | - Fengyu Lu
- School of Pharmacy, Guizhou University, Guiyang, Guizhou, China
| | - Bing Lin
- Guiyang College of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ying Zhou
- Guiyang College of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Tingting Liu
- School of Pharmacy, Guizhou University, Guiyang, Guizhou, China
| | - Yue Sun
- School of Pharmacy, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Comparative study of chemical composition and active components against α
-glucosidase of various medicinal parts of Morus alba
L. Biomed Chromatogr 2018; 32:e4328. [DOI: 10.1002/bmc.4328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022]
|