1
|
Emre FB, Turhan DÖ, Güngördü A. Toxicity of commercial and pure forms of three nonsteroidal anti-inflammatory drugs in Xenopus laevis embryos before and after ozonation. Drug Chem Toxicol 2024; 47:1004-1017. [PMID: 38465443 DOI: 10.1080/01480545.2024.2324325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
In this study, the toxic and teratogenic effects of three commercial drugs and their active ingredients on Xenopus laevis embryos before and after ozonation were evaluated using the Frog Embryos Teratogenesis Assay-Xenopus (FETAX). First, the median lethal concentration (LC50) and, if data were available, the median effective concentration, teratogenic index and minimum growth inhibitory concentration were determined for each drug substance without ozonation. Then, the active substance amounts of three selected nominal concentrations (LC50/2, LC50, and LC50×2) of each test substance before ozonation were measured by HPLC analysis and the toxicity of these substances was evaluated after 2, 3, 4, and 5 h of ozonation. In addition, degradation products that may occur during ozonation were evaluated by LC-MS analysis. The 96-h LC50s of Dolphin-diflunisal, Dichloron-diclofenac sodium, and Apranax-naproxen drug-active substance pairs were determined to be 22.3 and 11.1, 25.7 and 18.7, and 47.8 mg active substance/L and 45.3 mg/L, respectively. According to the FETAX test results, the Dolphin-diflunisal drug-active ingredient pair did not cause growth retardation in exposed embryos. Dichloron-diclofenac sodium and Apranax-naproxen drug-active ingredient pairs were both teratogenic and growth inhibitory. In the second stage of the study, in which the effectiveness of ozonation in eliminating the toxic effects of drugs is evaluated, it is seen that ozonation is partially successful in eliminating the toxic effects of Dolphin-diflunisal and Dichloron-diclofenac sodium pairs, but insufficient for eliminating the effects of the Apranax-naproxen pair.
Collapse
Affiliation(s)
- Fatma Bilge Emre
- Department of Mathematics and Science Education, Faculty of Education, Inonu University, Malatya, Turkey
| | - Duygu Özhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Zhang L, Sun J, Ding Y, Li L, Liu J. Simultaneous determination of methyltestosterone and its metabolite in fish by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:114-121. [PMID: 38086623 DOI: 10.1039/d3ay01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Methyltestosterone is one of the banned drugs in aquaculture, and it should be monitored in food-producing animals. 17α-Methyl-5β-androstane-3α,17β-diol, as the main metabolite of methyltestosterone in vertebrates, could be used as another marker for controlling the administration of methyltestosterone, due to its high residual concentration and slow elimination rate. In this study, an analytical method based on gas chromatography-mass spectrometry (GC-MS) was developed and validated for the simultaneous determination of methyltestosterone and its main metabolite in fish. After pretreatment by liquid-liquid extraction with n-hexane and solid phase extraction with C18 and NH2 columns, the target analytes in the muscle tissues were extracted and concentrated, and the influence of the sample matrix was eliminated. Then, the prepared samples were separated and detected with GC-MS in the selected ion monitoring (SIM) mode. Methyltestosterone-D3 was chosen as the internal standard for quantitation. After optimization, the limits of detection for methyltestosterone and 17α-methyl-5β-androstane-3α,17β-diol were 20 μg kg-1 and 15 μg kg-1, respectively. The limits of quantitation were both 50 μg kg-1. The calibration curves showed good linearity in the concentration range from 50.0 ng mL-1 to 500.0 ng mL-1. The correlation coefficients of methyltestosterone and 17α-methyl-5β-androstane-3α,17β-diol were more than 0.9990. The recoveries of the analytes in real samples were in the range of 99.7-116.6% with the relative standard deviation of 5.2-8.3%. The established method could meet the demand for simultaneous detection of methyltestosterone and its major metabolite, and it could be used to provide more information on the abuse of methyltestosterone in food-producing animals.
Collapse
Affiliation(s)
- Liufeng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Juan Sun
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210041, China
| | - Yinmeng Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Li Li
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
7
|
Jung HN, Park DH, Yoo KH, Cho HJ, Shim JH, Shin HC, Abd El-Aty AM. Simultaneous quantification of 12 veterinary drug residues in fishery products using liquid chromatography-tandem mass spectrometry. Food Chem 2021; 348:129105. [PMID: 33508596 DOI: 10.1016/j.foodchem.2021.129105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023]
Abstract
Herein, an analytical method was developed for simultaneous determination of 12 anthelmintics (closantel, niclosamide, nitroxynil, rafoxanide, cymiazole, fluazuron, levamisole, morantel, praziquantel, pyrantel, thiophanate, and trichlorfon) in fishery products (eel, flatfish, and shrimp) using liquid-liquid extraction coupled with liquid chromatography-tandem mass spectrometry. A reversed-phase analytical column was then used to separate the analytes from various matrices. Linear matrix-matched calibration curves were generated with coefficients of determination ≥ 0.9935. Recovery rates at three spiking levels (5, 10, and 20 µg/kg) ranged between 61.58% and 119.37% with relative standard deviations ≤ 19.05%. Limits of detection were in the range of 0.3-1.6 μg/kg, whereas limits of quantification ranged between 1.0 and 5.0 μg/kg. The matrix effect was moderate with values ranging from -99.47% to 51.98%. Matrices procured from large markets tested negative for the 12 anthelmintics. The developed method proved amenable to real sample testing and can be used for simultaneous determination of target analytes in aquatic products.
Collapse
Affiliation(s)
- Hae-Ni Jung
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Da-Hee Park
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyung-Hee Yoo
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hee-Jung Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
8
|
Bourillon B, Acou A, Trancart T, Belpaire C, Covaci A, Bustamante P, Faliex E, Amilhat E, Malarvannan G, Virag L, Aarestrup K, Bervoets L, Boisneau C, Boulenger C, Gargan P, Becerra-Jurado G, Lobón-Cerviá J, Maes GE, Pedersen MI, Poole R, Sjöberg N, Wickström H, Walker A, Righton D, Feunteun É. Assessment of the quality of European silver eels and tentative approach to trace the origin of contaminants - A European overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140675. [PMID: 32927526 DOI: 10.1016/j.scitotenv.2020.140675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The European eel is critically endangered. Although the quality of silver eels is essential for their reproduction, little is known about the effects of multiple contaminants on the spawning migration and the European eel management plan does not take this into account. To address this knowledge gap, we sampled 482 silver eels from 12 catchments across Europe and developed methods to assess three aspects of eel quality: muscular lipid content (N = 169 eels), infection with Anguillicola crassus (N = 482), and contamination by persistent organic pollutants (POPs, N = 169) and trace elements (TEs, N = 75). We developed a standardized eel quality risks index (EQR) using these aspects for the subsample of 75 female eels. Among 169 eels, 33% seem to have enough muscular lipids content to reach the Sargasso Sea to reproduce. Among 482 silver eels, 93% were infected by A. crassus at least once during their lifetime. All contaminants were above the limit of quantification, except the 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), Ag and V. The contamination by POPs was heterogeneous between catchments while TEs were relatively homogeneous, suggesting a multi-scale adaptation of management plans. The EQR revealed that eels from Warwickshire were most impacted by brominated flame-retardants and agricultural contaminants, those from Scheldt were most impacted by agricultural and construction activities, PCBs, coal burning, and land use, while Frémur eels were best characterized by lower lipid contents and high parasitic and BTBPE levels. There was a positive correlation between EQR and a human footprint index highlighting the capacity of silver eels for biomonitoring human activities and the potential impact on the suitability of the aquatic environment for eel population health. EQR therefore represents a step forward in the standardization and mapping of eel quality risks, which will help identify priorities and strategies for restocking freshwater ecosystems.
Collapse
Affiliation(s)
- Bastien Bourillon
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS FRE 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles, Centre de Recherche et d'Enseignement sur les Systèmes Côtiers, station de biologie marine de Dinard, 38 rue du Port Blanc, 35800 Dinard, France.
| | - Anthony Acou
- UMS 2006 Patrimoine Naturel (PatriNat, OFB/CNRS/MNHN), Centre de Recherche et d'Enseignement sur les Systèmes Côtiers, station de biologie marine de Dinard, 38 rue du Port Blanc, 35800 Dinard, France; OFB, Management of Diadromous Fish in their Environment OFB-INRAE-Agrocampus Ouest-UPPA, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
| | - Thomas Trancart
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS FRE 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles, Centre de Recherche et d'Enseignement sur les Systèmes Côtiers, station de biologie marine de Dinard, 38 rue du Port Blanc, 35800 Dinard, France
| | - Claude Belpaire
- Institute for Nature and Forest Research (INBO), Dwersbos 28, 1630 Linkebeek, Belgium
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Elisabeth Faliex
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (Cefrem), UMR 5110 CNRS-Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France
| | - Elsa Amilhat
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (Cefrem), UMR 5110 CNRS-Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France
| | - Govindan Malarvannan
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Laure Virag
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS FRE 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles, Centre de Recherche et d'Enseignement sur les Systèmes Côtiers, station de biologie marine de Dinard, 38 rue du Port Blanc, 35800 Dinard, France
| | - Kim Aarestrup
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Lieven Bervoets
- University of Antwerp, Systemic Physiological and Ecotoxicological Research group (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Catherine Boisneau
- UMR 7324 CItés, TERitoires, Environnement et Sociétés (CITERES, CNRS, Université de Tours), 33 Allée Ferdinand de Lesseps, 37200 Tours, France
| | - Clarisse Boulenger
- OFB, Management of Diadromous Fish in their Environment OFB-INRAE-Agrocampus Ouest-UPPA, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France; INRAE, UMR 985, INRA-Agrocampus, Ecologie et Santé des Ecosystèmes, Rennes Cedex, France
| | - Paddy Gargan
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin 24, Ireland
| | - Gustavo Becerra-Jurado
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin 24, Ireland; Institute for European Environmental Policy, Department of Biodiversity and Ecosystem Services, Rue Joseph II 36-38, 1000 Brussels, Belgium
| | - Javier Lobón-Cerviá
- Department of evolutionary Ecology, National Museum of Natural Science (CSIC), C/. Jose Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Gregory E Maes
- Aquaculture, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; Center for Human Genetics, UZ Leuven - Genomics Core, KU Leuven, Leuven 3000, Belgium; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| | - Michael Ingemann Pedersen
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Russell Poole
- Marine Institute, Fisheries Ecosystems Advisory Services, Newport, Co. Mayo, Ireland
| | - Niklas Sjöberg
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - Håkan Wickström
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - Alan Walker
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, England, United Kingdom
| | - David Righton
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, England, United Kingdom
| | - Éric Feunteun
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS FRE 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles, Centre de Recherche et d'Enseignement sur les Systèmes Côtiers, station de biologie marine de Dinard, 38 rue du Port Blanc, 35800 Dinard, France
| |
Collapse
|