1
|
Yang J, Xiao S, Li L, Zhu A, Xiao W, Wang Q. Actin Dysregulation Mediates Nephrotoxicity of Cassiae Semen Aqueous Extracts. TOXICS 2024; 12:556. [PMID: 39195658 PMCID: PMC11360101 DOI: 10.3390/toxics12080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Cassiae semen, commonly consumed as roasted tea, has been widely used for both medicinal purposes and dietary supplements. In this study, we investigated the nephrotoxic effects and underlying mechanisms of Cassiae semen aqueous extracts (CSAEs) using computational and animal models. Both male and female Sprague Dawley rats were treated with 4.73-47.30 g/kg (body weight) of CSAEs by oral gavage twice a day for 7-28 days. We found that serum and urinary biomarkers of kidney injury and kidney coefficients were increased in a dose-dependent manner, and were accompanied by morphological alterations in the kidneys of CSAEs-treated rats. Computational and molecular docking approaches predicted that the three most abundant components of CSAEs-obtusifolin, aurantio-obtusin, and obtusin-exhibited strong affinity for the binding of F-actin, ROCK1, and Rac1, and the RhoA-ROCK pathway was identified as the most likely regulatory mechanism mediating the nephrotoxicity of CSAEs. Consistently, immunofluorescence staining revealed F-actin and cytoskeleton were frequently disturbed in renal cells and brush borders at high doses of CSAEs. Results from gene expression analyses confirmed that CSAEs suppressed the key proteins in the RhoA-ROCK signaling pathway and consequently the expression of F-actin and its stabilization genes. In summary, our findings suggest that Cassiae semen can depolymerize and destabilize actin cytoskeleton by inhibition of the RhoA-ROCK pathway and/or direct binding to F-actin, leading to nephrotoxicity. The consumption of Cassiae semen as a supplement and medicine warrants attention.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Sheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
- Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Chen Y, Wu H, Wang L, Yue C, Chen X, Wu T, Yang Y, Tang L, Wang Z. Chemical composition and absorption characteristics of Raw and Prepared Cassiae Semen extracts based on ultra-high-performance liquid chromatography-quadrupole Orbitrap high-resolution mass spectrometry. J Sep Sci 2024; 47:e2300826. [PMID: 38234028 DOI: 10.1002/jssc.202300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
In traditional Chinese medicine, the two commodity forms of Cassiae Semen Raw and Prepared Cassiae Semen, exert different clinical applications, in which Prepared Cassiae Semen is commonly used to treat liver and eye diseases. However, the material basis of Raw and Prepared Cassiae Semen remains unclear due to the limited studies on their overall composition and metabolism in vivo. In this study, an integrated analysis strategy based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry was established to systematically screen the prototype and metabolite constituents of Raw and Prepared Cassiae Semen. Automatic matching analysis of metabolites was performed on Compound Discoverer software based on the function of predicting metabolites. Using this strategy, a total of 77 compounds in Raw Cassiae Semen and 71 compounds in Prepared Cassiae Semen were identified. Furthermore, in vivo study, 46 prototype components and 104 metabolites from the Raw Cassiae Semen group and 41 prototype components and 87 metabolites from the Prepared Cassiae Semen group were unambiguously or preliminarily identified in mice (plasma, urine, feces, eye, and liver). This is the first study of chemical component analysis and in vivo metabolite profiling of Raw and Prepared Cassiae Semen.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yang Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
3
|
Chen Y, Chen X, Yang X, Gao P, Yue C, Wang L, Wu T, Jiang T, Wu H, Tang L, Wang Z. Cassiae Semen: A comprehensive review of botany, traditional use, phytochemistry, pharmacology, toxicity, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116199. [PMID: 36702448 DOI: 10.1016/j.jep.2023.116199] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassiae Semen, belonging to the family Leguminosae, is derived from the dry mature seeds of Cassia obtusifolia L. or Cassia tora L. and has long been used as a laxative, hepatoprotective, improve eyesight, and antidiabetic complications medicine or functional food in Asia. AIMS OF THE REVIEW This review summarizes the integrated research progress of botany, traditional uses, phytochemistry, pharmacology, toxicity, and quality control of Cassiae Semen. Additionally, the emerging challenges and possible developing directions are discussed as well. MATERIALS AND METHODS The information on Cassiae Semen was collected from published scientific materials, including ancient books of traditional Chinese Medicine; Ph.D. and M. Sc. dissertations; monographs on medicinal plants; pharmacopoeia of various countries and electronic databases, such as PubMed, Web of Science, ACS, Science Direct, J-STAGE, Springer link, Taylor, CNKI and Google Scholar, etc. RESULTS: First, the traditional uses and plant origins of Cassiae Semen are outlined. Secondly, approximately 137 compounds, including anthraquinones, naphthopyranones, naphthalenes, flavones, polysaccharides and other compounds, have been isolated and identified from Cassia obtusifolia L. and Cassia tora L. Third, the pharmacological activities and mechanisms of crude extract of Cassiae Semen and its main bioactive compounds are summarized. Moreover, the processing, toxicity, and quality control are introduced briefly. CONCLUSIONS Cassiae Semen is a frequently used Chinese Materia Medica with pharmacological effects that mainly affect the digestive system, cardiovascular systems and nervous system. This review summarized its botany, traditional uses, phytochemistry, and pharmacology, it also exhibited recent scientific research advances and gaps, which provide a deeper insight into the understanding and application of Cassiae Semen. In future research on Cassiae Semen, more attention should be given to the pharmacological activities of naphthopyranones and polysaccharides and the mechanism of action for improving eye diseases. Meanwhile, it is essential to focus on strengthening the study on the pharmacokinetics research and the safety evaluation of related health products research.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoyun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Peiyun Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
4
|
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects. Pharmaceutics 2022; 14:pharmaceutics14122683. [PMID: 36559174 PMCID: PMC9786103 DOI: 10.3390/pharmaceutics14122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.
Collapse
|
5
|
Liu N, Chen P, Du X, Sun J, Han S. In vitro inhibitory effect of obtusofolin on the activity of CYP3A4, 2C9, and 2E1. BMC Complement Med Ther 2021; 21:218. [PMID: 34470620 PMCID: PMC8411522 DOI: 10.1186/s12906-021-03397-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Dongying People's Hospital, No. 317, Nanyi Road, Dongcheng, Dongying, 257091, Shandong Province, China
| | - Ping Chen
- Department of Ophthalmology, Dongying People's Hospital, No. 317, Nanyi Road, Dongcheng, Dongying, 257091, Shandong Province, China
| | - Xiaojun Du
- Department of Ophthalmology, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, China
| | - Junxia Sun
- Department of Ophthalmology, Dongying People's Hospital, No. 317, Nanyi Road, Dongcheng, Dongying, 257091, Shandong Province, China
| | - Shasha Han
- Department of Ophthalmology, Dongying People's Hospital, No. 317, Nanyi Road, Dongcheng, Dongying, 257091, Shandong Province, China.
| |
Collapse
|