1
|
Bai YY, Tian R, Qian Y, Zhao CB, Yan YG, Zhang L, Yue SJ, Zhang Q, Wang YW, Tang YP. Integrated gut microbiota and serum pharmacochemistry reveal the mechanisms of wine steaming in alleviating rhubarb diarrhea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156105. [PMID: 39368337 DOI: 10.1016/j.phymed.2024.156105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Long-term use of rhubarb (RH) can cause adverse gastrointestinal reactions (such as diarrhea), whereas RH steaming with wine (PRH) can alleviate RH-induced diarrhea. However, the potential material basis and mechanisms by which wine steaming alleviates diarrhea caused by RH remain unclear. PURPOSE To reveal the potential material basis and underlying mechanisms of wine steaming in alleviating diarrhea caused by RH from the perspective of small intestinal flora and immune function. METHODS The major anthraquinone/anthrone components were detected using high-performance liquid chromatography (HPLC). Constipation model mice were replicated using loperamide hydrochloride and were administered RH and PRH for six consecutive weeks. Histopathological observation (duodenum, jejunum, and ileum) was performed using hematoxylin-eosin (HE) staining, and the serum levels of inflammatory cytokines, immunoglobulin G (IgG), and immunoglobulin A (IgA) were examined. CD4+, CD8+, and Treg cells counts in peripheral blood were determined using flow cytometry; The protein expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) was determined using immunohistochemistry (IHC) and western blot (WB). The small intestine contents and feces were analyzed by 16 S rRNA sequencing and the contents of short chain fatty acids (SCFAs) in feces were determined using gas chromatography-mass spectrometry (GC-MS). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the blood absorption compounds and endogenous metabolites. RESULTS The levels of the major anthraquinone/anthrone components were decreased in PRH. RH and PRH both increased the wet fecal weight at 12 h (WFW-12) and fecal water rate (FWR), alleviated the dry and black fecal morphology, and relieved small intestine injuries in the second week. In the fourth week, although RH and PRH alleviated the abnormal levels of indicators in the model mice (fecal water rate, immune cells percentage, and TLR4/NF-κB expression), minor small intestinal damage was observed. Compared to that at the fourth week, RH and PRH increased the levels of WFW-12, FWR, inflammatory cytokines, and TLR4/NF-κB expression, and decreased the levels of IgG/IgA and immune cells with extended administration (sixth week). Further, damage to the small intestine worsened (severe ileal damage) and different degrees of loose stools were observed in RH- and PRH-administered mice in the sixth week. Compared with those in the control group, the levels of WFW-12, FWR, inflammatory cytokines, TLR4/NF-κB expression, IgG/IgA, and immune cell percentage were significantly different in the RH-H and PRH-H mice at the sixth week (except for CD8+in PRH-H). Further, RH and PRH disturbed the gut microbiota (GM) (Lactobacillus and Dubosiella decreased, Aerococcus and Corynebacterium increased) and obviously reduced the content of SCFAs (acetic acid, butyric acid, and isobutyric acid). However, almost all the results indicated a lower impact of PRH than that of RH. Metabolic pathways mainly involved in glycerophospholipid metabolism were identified along with a total of 21 blood absorption components, including anthraquinones, anthrones, flavanols, and tannins. The correlation analysis showed a positive correlation of pathogenic bacteria (Aerococcus and Corynebacterium) with inflammatory cytokines, TLR4/NF-κB, LysoPC(20:0/0:0), and PE (16:0/20:4(8Z,11Z,14Z,17Z)) and a negative correlation with immune cells and SCFAs (acetic acid and isobutyric acid); however, the opposite results were observed for beneficial bacteria (Lactobacillus and Dubosiella). CONCLUSION Overall, PRH can alleviate RH-induced diarrhea by recovering the GM imbalance and abnormal levels of GM-mediated SCFAs, alleviating the decrease in cellular immune function and abnormal expression of TLR4/NF-κB, thereby suppressing the release of inflammatory factors, possibly, through its lower content of anthraquinones. This study explored for the first time the processing mechanism of wine steaming in alleviating RH-induced diarrhea from the aspects of small intestinal flora and small intestinal immune function.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou 215000, Jiangsu Province, China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
2
|
Nosrati Gazafroudi K, Mailänder LK, Daniels R, Kammerer DR, Stintzing FC. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules 2024; 29:2821. [PMID: 38930889 PMCID: PMC11206348 DOI: 10.3390/molecules29122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Equisetaceae family, commonly known as horsetails, has been of scientific interest for decades due to its status as one of the most ancient extant vascular plant families. Notably, the corresponding species have found their place in traditional medicine, offering a wide array of applications. This study presents a comprehensive phytochemical analysis of polar secondary metabolites within the sterile stems of five distinct Equisetum species using HPLC-DAD-ESI-MSn. For this purpose, fresh plant material was extracted with acetone/water, and the resulting crude extracts were fractionated using dichloromethane, ethyl acetate, and n-butanol, respectively. The results reveal a complex array of compounds, including hydroxycinnamic acids, hydroxybenzoic acids, flavonoids, and other phenolic compounds. In addition, total phenolic contents (Folin-Ciocalteu assay) and antioxidant activities (DPPH assay) of the plant extracts were evaluated using spectrophotometric methods. The present comparative analysis across the five species highlights both shared and species-specific metabolites, providing valuable insights into their chemical diversity and potential pharmacological properties.
Collapse
Affiliation(s)
- Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| |
Collapse
|
3
|
Au TTD, Ho YL, Chang YS. Qualitative and quantitative analysis methods for quality control of rhubarb in Taiwan's markets. Front Pharmacol 2024; 15:1364460. [PMID: 38746013 PMCID: PMC11091417 DOI: 10.3389/fphar.2024.1364460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Rhubarb is a traditional Chinese medicine (TCM) used to release heat and has cathartic effects. Official rhubarb in Taiwan Herbal Pharmacopeias 4th edition (THP 4th) and China Pharmacopeia 2020 (CP 2020) are the roots and rhizomes of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. However, the Rheum genus is a large genus with many different species, and owing to the similarity in appearance and taste with official rhubarb, there needs to be more clarity in the distinction between the species of rhubarb and their applications. Given the time-consuming and complicated extraction and chromatography methods outlined in pharmacopeias, we improved the qualitative analysis and quantitative analysis methods for rhubarb in the market. Hence, we applied our method to identify the species and quality of official and unofficial rhubarb. Method: We analyzed 21 rhubarb samples from the Taiwanese market using a proposed HPLC-based extraction and qualitative analysis employing eight markers: aloe-emodin, rhein, emodin, chrysophanol, physcion, rhapontigenin, rhaponticin, and resveratrol. Additionally, we developed a TLC method for the analysis of rhubarb. KEGG pathway analysis was used to clarify the phytochemical and pharmacological knowledge of official and unofficial rhubarb. Results: Rhein and rhapontigenin emerged as key markers to differentiate official and unofficial rhubarb. Rhapontigenin is abundant in unofficial rhubarb; however, rhein content was low. In contrast, their contents in official rhubarb were opposite to their contents in unofficial rhubarb. The TLC analysis used rhein and rhapontigenin to identify rhubarb in Taiwan's markets, whereas the KEGG pathway analysis revealed that anthraquinones and stilbenes affected different pathways. Discussion: Eight reference standards were used in this study to propose a quality control method for rhubarb in Taiwanese markets. We propose a rapid extraction method and quantitative analysis of rhubarb to differentiate between official and unofficial rhubarb.
Collapse
Affiliation(s)
- Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
5
|
Zhao X, Yan F, Li YM, Tang J, Hu XC, Feng Z, Gao J, Peng L, Zhang G. Comparative transcriptome analysis and identification of candidate R2R3-MYB genes involved in anthraquinone biosynthesis in Rheum palmatum L. Chin Med 2024; 19:23. [PMID: 38317158 PMCID: PMC10845799 DOI: 10.1186/s13020-024-00891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Rheum palmatum L. has important medicinal value because it contains biologically active anthraquinones. However, the key genes and TFs involved in anthraquinone biosynthesis and regulation in R. palmatum remain unclear. METHODS Based on full length transcriptome data, in this study, we screened the differentially expressed genes in the anthraquinone biosynthesis pathway. The R2R3-MYB family genes of R. palmatum were systematically identified based on full-length transcriptome sequencing followed by bioinformatics analyses. The correlation analysis was carried out by using co-expression analysis, protein interaction analysis, and real-time fluorescence quantitative analysis after MeJA treatment. The RpMYB81 and RpMYB98 genes were amplified by RT-PCR, and their subcellular localization and self-activation characteristics were analyzed. RESULTS Comparative transcriptome analysis results revealed a total of 3525 upregulated and 6043 downregulated DEGs in the CK versus MeJA group; 28 DEGs were involved in the anthraquinone pathway. Eleven CHS genes that belonged to the PKS family were differentially expressed and involved in anthraquinone biosynthesis. Twelve differentially expressed MYBs genes were found to be co-expressed and interact with CHS genes. Furthermore, 52 MYB genes were identified as positive regulators of anthraquinone biosynthesis and were further characterized. Three MYB genes including RpMYB81, RpMYB98, and RpMYB100 responded to MeJA treatment in R. palmatum, and the levels of these genes were verified by qRT-PCR. RpMYB81 was related to anthraquinone biosynthesis. RpMYB98 had an interaction with genes in the anthraquinone biosynthesis pathway. RpMYB81 and RpMYB98 were mainly localized in the nucleus. RpMYB81 had self-activation activity, while RpMYB98 had no self-activation activity. CONCLUSION RpMYB81, RpMYB98, and RpMYB100 were significantly induced by MeJA treatment. RpMYB81 and RpMYB98 are located in the nucleus, and RpMYB81 has transcriptional activity, suggesting that it might be involved in the transcriptional regulation of anthraquinone biosynthesis in R. palmatum.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Yan
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi-Min Li
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Jing Tang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Chen Hu
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhao Feng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Gao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Liang Peng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Gang Zhang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| |
Collapse
|
6
|
Ma L, Wu Y, Luo J, Li F, Zhang M, Cai Y, Dai Y, Pi Z, Zheng F, Yue H. Identifying the active compounds and mechanism of action of TongFu XieXia Decoction for treating intestinal obstruction using network pharmacology combined with ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9664. [PMID: 38124169 DOI: 10.1002/rcm.9664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE TongFu XieXia Decoction (TFXXD), a formulation rooted in traditional Chinese medicine and optimized through clinical practice, serves as an advanced version of the classic Da Cheng Qi decoction used for treating intestinal obstruction (IO), demonstrating significant therapeutic efficacy. However, due to the intricate nature of herbal compositions, the principal constituents and potential mechanisms of TFXXD have yet to be clarified. Accordingly, this study seeks to identify the active compounds and molecular targets of TFXXD, as well as to elucidate its anti-IO mechanisms. METHODS Qualitative identification of the principal constituents of TFXXD was accomplished using ultra-high preformance liquid chromatography-quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS/MS) analysis. PharmMapper facilitated the prediction of potential molecular targets, whereas protein-protein interaction analysis was conducted using STRING 11.0. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape database. A "compounds-target-pathway" network was meticulously constructed within Cytoscape 3.8.2. Finally, molecular docking studies were performed to investigate the interactions between the core target and the crucial compound. RESULTS UPLC-Q-Orbitrap-MS/MS analysis identified 65 components with high precision and sensitivity. Furthermore, 64 potential targets were identified as integral to TFXXD bioactivity in IO treatment. Gene Ontology enrichment analysis revealed 995 distinct biological functions, while the Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 143 intricate signaling pathways. CONCLUSION Molecular docking studies substantiated the substantial affinity between the TFXXD bioactive constituents and their corresponding targets in the context of IO. TFXXD exerts its therapeutic efficacy in IO through a multifaceted interplay between multiple compounds, targets, and pathways. The integration of network pharmacology with UPLC-Q-Orbitrap-MS/MS has emerged as a promising strategy to unravel the intricate web of molecular interactions underlying herbal medicine. However, it is imperative to emphasize the necessity for further in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Liting Ma
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Luo
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
7
|
Li Y, Wu X, Ma Y, Xu L, Yang C, Peng D, Guo X, Wei J. Quantitative analysis of multi-components by single marker method combined with UPLC-PAD fingerprint analysis based on saikosaponin for discrimination of Bupleuri Radix according to geographical origin. Front Chem 2024; 11:1309965. [PMID: 38313222 PMCID: PMC10834642 DOI: 10.3389/fchem.2023.1309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Background: Saikosaponins are regarded as one of the most likely antipyretic constituents of Bupleuri Radix, establishing a comprehensive method that can reflect both the proportion of all constituents and the content of each saikosaponin is critical for its quality evaluation. Methods: In this study, the combination method of quantitative analysis of multiple components with a single marker (QAMS) and fingerprint was firstly established for simultaneous determination of 7 kinds of saikosaponins in Bupleuri Radix by ultra-high performance liquid chromatography (UPLC). Results: The results showed that saikosaponin d was identified as the optimum IR by evaluating the fluctuations and stability of the relative calibration factors (RCFs) under four different conditions. The new QAMS method has been confirmed to accurately quantify the 7 kinds of saikosaponins by comparing the obtained results with those obtained from external standard method and successfully classify the 20 batches of Bupleuri Radix from 8 provinces of China. The experimental time of fingerprint was significantly reduced to approximate 0.5 h through UPLC-PAD method, a total of 17 common peaks were identified. Conclusion: The QAMS-fingerprint method is feasible and reliable for the quality evaluation of Bupleuri Radix. This method could be considered to be spread in the production enterprises of Bupleuri Radix.
Collapse
Affiliation(s)
- Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengmin Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongqin Peng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Luo J, Cao WG, Yu B, Chen H, Wu YQ, Li YH, Pu XY, Zhong X, Zhang D. Quality evaluation of Hawk tea from different months and regions based on quantitative analysis of multiple components with a single marker (QAMS) combined with HPLC fingerprint. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:884-897. [PMID: 37483160 DOI: 10.1002/pca.3261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Hawk tea, a medicinal and edible plant, has been consumed for thousands of years in Southwest China. To date, no unified food safety standard for Hawk tea has been established, and systematic research on the quality of Hawk tea is lacking. OBJECTIVE The aim of this study was to develop a comprehensive evaluation method for the quality of Hawk tea based on inclusions content, high-performance liquid chromatography (HPLC) fingerprinting combined with the quantitative analysis of multiple components with a single marker (QAMS) method. METHODS The contents of total flavonoids, total phenols, total polysaccharides, and total protein were determined using the colorimetric method. An effective comprehensive evaluation method was established to classify the 16 batches of samples based on HPLC fingerprint analysis combined with similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), partial least-squares discrimination analysis (PLS-DA), and the QAMS method. RESULTS Flavonoids were the main chemical components of Hawk tea. The accuracy of the QAMS method was verified by comparing the calculated results with those of the external standard method (ESM). No significant differences were found between the two methods. Additionally, the fingerprint of Hawk tea was also established. CONCLUSION The method established in this study can be used for the comprehensive quality evaluation of Hawk tea and can also provide a reference for the quality evaluation of other herbal medicines.
Collapse
Affiliation(s)
- Juan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Wei-Guo Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- The Lab of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Bao Yu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ying-Qin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yang-Hong Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xi-Yu Pu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Zhong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Dan Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Liudvytska O, Bandyszewska M, Skirecki T, Krzyżanowska-Kowalczyk J, Kowalczyk M, Kolodziejczyk-Czepas J. Anti-inflammatory and antioxidant actions of extracts from Rheum rhaponticum and Rheum rhabarbarum in human blood plasma and cells in vitro. Biomed Pharmacother 2023; 165:115111. [PMID: 37421780 DOI: 10.1016/j.biopha.2023.115111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Rheum rhaponticum L. (rhapontic rhubarb) and Rheum rhabarbarum L. (garden rhubarb) are edible and medicinal rhubarb species used for many centuries in traditional medicine. This work is focused on the biological activity of extracts from petioles and roots of R. rhaponticum and R. rhabarbarum as well as rhapontigenin and rhaponticin, typical stilbenes present in these rhubarbs, in a context of their effects on blood physiology and cardiovascular health. Anti-inflammatory properties of the examined substances were evaluated in human peripheral blood mononuclear cells (PBMCs) and THP1-ASC-GFP inflammasome reporter cells. Due to the coexistence of inflammation and oxidative stress in cardiovascular diseases, the study design included also antioxidant assays. This part of the work involved the assessment of the protective efficiency of the examined substances against the peroxynitrite-triggered damage to human blood plasma components, including fibrinogen, a protein of critical importance for blood clotting and maintaining the haemostatic balance. Pre-incubation of PBMCs with the examined substances (1-50 μg/mL) considerably decreased the synthesis of prostaglandin E2 as well as the release of pro-inflammatory cytokines (IL-2 and TNF-α) and metalloproteinase-9. A reduced level of secreted apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks in the THP-1-ASC-GFP cells was also observed. The examined substances significantly diminished the extent of ONOO‾induced oxidative modifications of blood plasma proteins and lipids and normalized, or even strengthened blood plasma antioxidant capacity. Furthermore, a reduction of oxidative damage to fibrinogen, including modifications of tyrosine and tryptophan residues along with the formation of protein aggregates was found.
Collapse
Affiliation(s)
- Oleksandra Liudvytska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Magdalena Bandyszewska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
10
|
Zou JJ, Xu XL, Yang L, Wang YW, Li Y, Dai L, He D. Comprehensive Quality Evaluation of Qizhi Xiangfu Pills Based on Quantitative Analysis of Multi-Components by a Single Marker Combined with GC Fingerprints and Chemometrics. J AOAC Int 2023; 106:1414-1423. [PMID: 37027226 DOI: 10.1093/jaoacint/qsad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Qizhi Xiangfu Pills (QXPs) are a traditional Chinese medicine (TCM) used clinically for qi stagnation and blood stasis. The current quality control of QXPs in the ministry standards and the reported literature is minimal, and requires improvement. OBJECTIVE This study aimed to analyze and determine the active ingredients in QXPs for its overall evaluation. METHODS In this study, a quantitative analysis of multi-components by a single marker (QAMS) method was established to simultaneously determine caryophyllene oxide, cyperotundone, ligustilide, and α-cyperone in QXPs by GC. Moreover, the GC fingerprints of 22 batches of samples were also established, and the common peaks were initially identified by GC-MS, then classified in various dimensions using chemometric methods, and the main markers causing the discrepancies between groups were analyzed by orthogonal partial least-squares discrimination analysis (OPLS-DA). RESULTS Compared with an internal standard method (ISM), the determination results obtained by QAMS had no significant difference. Twenty-two common peaks were distinguished in the fingerprint of 22 batches of QXPs, 17 of which were identified, and the similarity of the fingerprints was greater than 0.898. The 22 batches of QXPs were roughly divided into 3 categories, and 12 main markers causing the discrepancies were discovered. CONCLUSION The established QAMS method combined with the GC fingerprint and chemometrics is convenient and feasible, which helps to improve the quality evaluation of QXPs and provides a demonstration for the related study of compound preparations and single herbs. HIGHLIGHTS QAMS combined with a GC fingerprint and chemometrics method was established to evaluate the quality of QXPs for the first time.
Collapse
Affiliation(s)
- Jia-Jia Zou
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiao-Li Xu
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Lin Yang
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Yi-Wu Wang
- Chongqing Medical University, Experimental Teaching Center, Daxuecheng Middle Road, Shapingba District, Chongqing 400016, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Dai
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Dan He
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
11
|
Liu C, Liu Q, Nian M, Wu H, Cao S, Wu H, Dong T, Wu P, Zhou A. Identification and quantitative analysis of the chemical constituents of Gandouling tablets using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300060. [PMID: 37344982 DOI: 10.1002/jssc.202300060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Gandouling tablets are used in a clinical agent for the treatment of hepatocellular degeneration; however, their chemical constituents have not been elucidated. Here, we screened and identified the chemical constituents of Gandouling tablets using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time of flight/mass spectrometry. A method for the quality evaluation of Gandouling tablets was developed by combining the UHPLC fingerprints and the simultaneous quantitative analysis of multiple active ingredients. For fingerprint analysis, 20 shared peaks were identified to assess the similarities among the 10 batches of Gandouling tablets and the similarity was >0.9. The levels of nine representative active ingredients were simultaneously determined to ensure consistency in quality. A total of 99 chemical components were identified, including 18 alkaloids, 20 anthraquinones, 13 flavonoids, 11 phenolic acids, 9 polyphenols, 7 phenanthrenes, 5 sesquiterpenes, 3 curcuminoids, 2 lignans, 2 isoflavones, 2 dianthranones, and 7 other components. The retention times, molecular formulae, and secondary fragmentation information of these compounds were analyzed, and the cleavage pathways and characteristic fragments of some of the representative compounds were elucidated. This systematic analysis used to identify the chemical components of Gandouling tablets lays the foundation for its further quality control and research on their pharmacodynamic substances.
Collapse
Affiliation(s)
- Cuicui Liu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Qiao Liu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Mengnan Nian
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Huan Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - Ting Dong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Peng Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| |
Collapse
|
12
|
Chemometric Discrimination of Cichorium glandulosum Boiss. et Huet and Cichorium intybus L. via Their Metabolic Profiling, Antioxidative, and Hypoglycemic Activities. Foods 2023; 12:foods12040901. [PMID: 36832980 PMCID: PMC9957518 DOI: 10.3390/foods12040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Cichorium glandulosum Boiss. et Huet (CG) and Cichorium intybus L. (CI) are widely used as the main raw material of functional food with hepatoprotective and hypoglycemic effects. Due to the lack of comparison on the chemical ingredients and efficacy, they were often used imprecisely and interchangeably. It is necessary to distinguish between them. With the plant metabolomics based on high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and multivariate chemometric techniques, the chemical ingredients were characterized and 59 compounds between CG and CI were classified. As for antioxidative and hypoglycemic activities in vitro, CI extraction exhibited better antioxidant activity than CG, while CG extraction showed stronger hypoglycemic activity. Furthermore, a bivariate correlation between the chemical composition and efficacy of the extract was also analyzed, and three differentially strong correlation components between CI and CG were prepared, and the antioxidative and hypoglycemic efficacies were compared in vivo and different active phenotypes were obtained. Finally, we revealed chemical and biological differences between CG and CI, providing a basis for achieving better quality control and developing more effective functional foods.
Collapse
|
13
|
Liudvytska O, Ponczek MB, Ciesielski O, Krzyżanowska-Kowalczyk J, Kowalczyk M, Balcerczyk A, Kolodziejczyk-Czepas J. Rheum rhaponticum and Rheum rhabarbarum Extracts as Modulators of Endothelial Cell Inflammatory Response. Nutrients 2023; 15:949. [PMID: 36839307 PMCID: PMC9964395 DOI: 10.3390/nu15040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Inflammation, endothelial dysfunction, and alterations in blood physiology are key factors contributing to atherosclerosis and other cardiovascular disorders. Hence, modulation of endothelial function and reducing its pro-inflammatory and pro-thrombotic activity is considered one of the most important cardioprotective strategies. This study aimed to evaluate the anti-inflammatory potential of rhubarb extracts isolated from petioles and underground organs of Rheum rhabarbarum L. (garden rhubarb) and R. rhaponticum L. (rhapontic rhubarb) as well as two stilbenoids, typically found in these plants, i.e., rhapontigenin (RHPG) and its glycoside, rhaponticin (RHPT). METHODS Analysis of the anti-inflammatory effects of the indicated rhubarb-derived substances involved different aspects of the endothelial cells' (HUVECs) response: release of the inflammatory mediators; cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX) expression as well as the recruitment of leukocytes to the activated HUVECs. The ability of the rhubarb-derived extracts to inhibit COX-2 and 5-LOX activities was examined as well. The study was supplemented with the in silico analysis of major components of the analyzed extracts' interactions with COX-2 and 5-LOX. RESULTS The obtained results indicated that the examined plant extracts and stilbenes possess anti-inflammatory properties and influence the inflammatory response of endothelial cells. Biochemical and in silico tests revealed significant inhibition of COX-2, with special importance of rhaponticin, as a compound abundant in both plant species. In addition to the reduction in COX-2 gene expression and enzyme activity, a decrease in the cytokine level and leukocyte influx was observed. Biochemical tests and computational analyses indicate that some components of rhubarb extracts may act as COX-2 inhibitors, with marginal inhibitory effect on 5-LOX.
Collapse
Affiliation(s)
- Oleksandra Liudvytska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Michał B. Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Oskar Ciesielski
- Department of Sociobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- The Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Aneta Balcerczyk
- Department of Sociobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
14
|
Xin T, Li R, Lou Q, Lin Y, Liao H, Sun W, Guan M, Zhou J, Song J. Application of DNA barcoding to the entire traditional Chinese medicine industrial chain: A case study of Rhei Radix et Rhizoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154375. [PMID: 35952576 DOI: 10.1016/j.phymed.2022.154375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Safety concerns, caused by complex and unpredictable adulterants, run through the entire industrial chain of traditional Chinese medicines (TCMs). However, the conventional circulation traceability system only focuses on a certain end or link at the back end of the TCM industrial chain, ignoring the integrity of the links cross the entire industrial chain and lacking traceability. In consequence, a strict and rational supervision system is urgently required for the entire industrial chain. HYPOTHESIS/PURPOSE We hypothesize that DNA barcoding would be a suitable measure for the traceability of adulterants in the entire TCM industrial chain. METHODS In this study, Rhei Radix et Rhizoma was selected as a model to establish a traceability system for the entire TCM industrial chain. A total of 110 samples, including leaves, seeds, roots, decoction pieces, and traditional Chinese patent medicines (TCPMs), were collected upstream, midstream, and downstream of the entire industrial chain of Rhei Radix et Rhizoma. The ndhF-rpl32 fragment rather than the universal DNA barcodes, which could not distinguish the three original species of Rhei Radix et Rhizoma, was selected as a specific DNA barcode to evaluate the practical application of DNA barcoding in the chain. RESULTS The results showed that the ndhF-rpl32 fragment in all samples could be amplified and bi-directionally sequenced. Based on the standard operating procedures of DNA barcoding, the ndhF-rpl32 fragment clearly distinguished the seven Rheum species collected upstream of the entire industrial chain. For the samples collected midstream and downstream of the entire industrial chain, 25% of the 36 commercial decoction pieces samples were identified as adulterants, whereas the eight TCPM samples were all derived from genuine Rhei Radix et Rhizoma. CONCLUSIONS This study shows that DNA barcoding is a powerful and suitable technology that can be applied to trace TCMs in the entire industrial chain, thereby assuring clinical medication safety.
Collapse
Affiliation(s)
- Tianyi Xin
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ranjun Li
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Qian Lou
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yulin Lin
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hai Liao
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Meng Guan
- Sinopharm Traditional Chinese Medicine Co., Ltd., Beijing 100097, China
| | - Jiayu Zhou
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Jingyuan Song
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China.
| |
Collapse
|
15
|
Effects of Natural Rheum tanguticum on the Cell Wall Integrity of Resistant Phytopathogenic Pectobacterium carotovorum subsp. Carotovorum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165291. [PMID: 36014529 PMCID: PMC9414576 DOI: 10.3390/molecules27165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022]
Abstract
The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.
Collapse
|
16
|
Shi H, Chang YQ, Feng X, Yang GY, Zheng YG, Zheng Q, Zhang LL, Zhang D, Guo L. Chemical comparison and discrimination of two plant sources of Angelicae dahuricae Radix, Angelica dahurica and Angelica dahurica var. formosana, by HPLC-Q/TOF-MS and quantitative analysis of multiple components by a single marker. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:776-791. [PMID: 35470493 DOI: 10.1002/pca.3129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Angelica dahurica(BZ) and Angelica dahurica var. formosana(HBZ) are two plant sources of Angelicae dahuricae Radix. Although BZ and HBZ are commonly used herbal medicines with great medicinal and dietary values, study on their phytochemicals and bioactive compositions is limited. OBJECTIVE To compare the chemical compositions of BZ and HBZ and find the chemical makers for discrimination and quality evaluation of the two botanical origins of Angelicae dahuricae Radix. METHODOLOGY A high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for chemical profiling of BZ and HBZ. Then, a quantitative analysis of multiple components by a single marker method was developed for simultaneous determination of nine bioactive coumarins (xanthotoxol, oxypeucedanin hydrate, byakangelicin, xanthotoxin, bergapten, oxypeucedanin, phellopterin, imperatorin and isoimperatorin). Moreover, chemometrics were performed to compare and discriminate BZ and HBZ samples. RESULTS A total of 30 coumarins compounds were identified, and the chemical compositions in BZ and HBZ were quite similar. The quantitative analysis showed that there were significant differences in the contents of bioactive coumarins, and the chemometric analysis indicated five coumarins (xanthotoxol, xanthotoxin, bergapten, phellopterin and isoimperatorin) were responsible for the significant differences between BZ and HBZ, which could be used as chemical markers to distinguish the two original plant sources of Angelicae dahuricae Radix. CONCLUSION The present work provided useful information for understanding the chemical differences between BZ and HBZ and also provided feasible methods for quality evaluation and discrimination of herbal medicines originating from multiple botanical sources.
Collapse
Affiliation(s)
- Huan Shi
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xie Feng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Gui-Ya Yang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Qian Zheng
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Lan-Lan Zhang
- Hebei Yuzhilin Biotechnology Co., Ltd, Shijiazhuang, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
17
|
Liang W, Weimei Z, Chen Y, Sun J, Guo F, Hu J, Gao W, Li X. Quality evaluation of different varieties of rhubarb based on multicomponent and bioactivity: Committed to quality control in the production of rhubarb decoction pieces. Biomed Chromatogr 2022; 36:e5368. [DOI: 10.1002/bmc.5368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Liang
- School of Pharmaceutical Science and Technology Tianjin University Tianjin PR China
- Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic & Germplasm Enhancement, College of Agronomy, College of Life Science and Technology, Gansu Provincial Gansu Agricultural University Lanzhou PR China
| | - Zhang Weimei
- School of Pharmaceutical Science and Technology Tianjin University Tianjin PR China
| | - Yuan Chen
- Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic & Germplasm Enhancement, College of Agronomy, College of Life Science and Technology, Gansu Provincial Gansu Agricultural University Lanzhou PR China
| | - Jiachen Sun
- School of Biotechnology and Food Science Tianjin University of Commerce Tianjin PR China
| | - Fengxia Guo
- Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic & Germplasm Enhancement, College of Agronomy, College of Life Science and Technology, Gansu Provincial Gansu Agricultural University Lanzhou PR China
| | - Jing Hu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin PR China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology Tianjin University Tianjin PR China
- College of pharmacy Qinghai Minzu University Qinhai PR China
| | - Xia Li
- School of Pharmaceutical Science and Technology Tianjin University Tianjin PR China
| |
Collapse
|
18
|
Zhang C, Li N, Wang Z, Wang S, Wang Z, Fan X, Xu X, Zhou Y, Wang Y. Unsaturated fatty-acid based HPLC fingerprints in combination with quantitative analysis of multi-components by single-marker for the classification of Rana chensinensis ovum. NEW J CHEM 2022. [DOI: 10.1039/d2nj00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive quality evaluation strategy was established for Rana chensinensis ovum based on analytical chemistry and chemometrics.
Collapse
Affiliation(s)
- Changli Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Nan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhongyao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shihan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xuanrui Fan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|