1
|
Wang S, Du DF, Li F, Chen MY, Sheng HG, Zhang C, Guo F, Chen Z, Cao GS. "UHPLC-Q-TOF/MS-chemometrics-network pharmacology" integrated strategy to discover quality markers of raw and stir-fried Fructus Tribuli and process optimization of stir-fried Fructus Tribuli. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1036-1051. [PMID: 38487966 DOI: 10.1002/pca.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Fructus Tribuli, the dried ripe fruit of Tribulus terrestris L., has various beneficial effects, including liver-calming and depression-relieving effects. Raw Fructus Tribuli (RFT) and stir-fried Fructus Tribuli (SFT) are included in the Chinese Pharmacopoeia 2020 edition (Ch. P 2020). However, owing to the lack of specific regulations on SFT-processing parameters in Ch. P 2020, it is difficult to ensure the quality of commercially available SFT. OBJECTIVE The present study aimed to screen the quality markers (Q-markers) of RFT and SFT and optimize the processing technology of SFT based on the identified Q-markers. METHODS First, the ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) technology as well as multiple statistical analysis along with network pharmacology was used to comprehensively identify the Q-markers of RFT and SFT. Then, based on single-factor experiments, the Box-Behnken design (BBD) response surface methodology (RSM) was used to optimize the processing technology of SFT and perform process validation. RESULTS A total of 63 components were identified in RFT and SFT extracts. Terrestrosin D and Terrestrosin K were initially considered the Q-markers of RFT and SFT, respectively. The optimum processing technology conditions were 208°C, 14 min, and 60 r·min-1. Three batches of process validation were performed, and the mean composite score was 56.87, with a relative standard deviation (RSD) value of 1.13%. CONCLUSION The content of steroidal saponin components in RFT was significantly different before and after stir-frying. Terrestrosin D and Terrestrosin K were validated as the Q-markers of RFT and SFT, respectively. The identification of Q-markers for RFT and SFT offered a clear index for optimizing the SFT-processing technology and provided a basis for the quality control of RFT and SFT decoction pieces.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Feng Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Yue Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Gang Sheng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Guo
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Shang Cao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Wang SY, Sun XC, Lv XY, Li JN, Han B, Liu KL, Wang S, Sheng HG, Zhang C, Guo F, Cui YD. Network pharmacology-based approach uncovers the pharmacodynamic components and mechanism of Fructus Tribuli for improving endothelial dysfunction in hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2023:116749. [PMID: 37295575 DOI: 10.1016/j.jep.2023.116749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Tribuli (FT), a traditional Chinese medicinal herbal, has been used for the clinical treatment of cardiovascular diseases for many years and affects vascular endothelial dysfunction (ED) in patients with hypertension. AIM OF THE STUDY This study aimed to demonstrate the pharmacodynamic basis and mechanisms of FT for the treatment of ED. MATERIALS AND METHODS The present study used ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) to analyze and identify the chemical components of FT. The active components in blood were determined after the oral administration of FT by comparative analysis to blank plasma. Then, based on the active components in vivo, network pharmacology was performed to predict the potential targets of FT in treating ED. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed, and component-target-pathway networks were constructed. Interactions between the major active components and main targets were verified by molecular docking. Moreover, spontaneously hypertensive rats (SHRs) were divided into the normal, model, valsartan, low-dose FT, medium-dose FT, and high-dose FT experimental groups. In pharmacodynamic verification studies, treatment effects on blood pressure, serum markers (nitric oxide [NO], endothelin-1 [ET-1,], and angiotensin Ⅱ [Ang Ⅱ)]) of ED, and endothelial morphology of the thoracic aorta were evaluated and compared between groups. Finally, the PI3K/AKT/eNOS pathway was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot of the thoracic aorta of rats in each group to detect the mRNA expression of PI3K, AKT, and eNOS and the protein expression of PI3K, AKT, p-AKT, eNOS, and p-eNOS. RESULTS A total of 51 chemical components were identified in FT, and 49 active components were identified in rat plasma. Thirteen major active components, 22 main targets, and the PI3K/AKT signaling pathway were screened by network pharmacology. The animal experiment results showed that FT reduced systolic blood pressure and ET-1 and Ang Ⅱ levels and increased NO levels in SHRs to varying degrees. The therapeutic effects were positively correlated with the oral dose of FT. Hematoxylin-eosin (HE) staining confirmed that FT could alleviate the pathological damage of the vascular endothelium. qRT-PCR and Western blot analysis confirmed that up-regulated expression of the PI3K/AKT/eNOS signaling pathway could improve ED. CONCLUSIONS In this study, the material basis of FT was comprehensively identified, and the protective effect on ED was confirmed. FT had a treatment effect on ED through multi-component, multi-target, and multi-pathways. It also played a role by up-regulating the PI3K/AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Shu-Yue Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou, 256600, China
| | - Xiao-Chen Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Zaozhuang Vocational College of Science & Technology, Zaozhuang, 277500, China
| | - Xi-Yu Lv
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jing-Na Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bing Han
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kun-Lin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hua-Gang Sheng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Fei Guo
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Yi-Dong Cui
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Yuan YH, Liu KL, Wang S, Wang SY, Sun XC, Lv XY, Han B, Zhang C, Guo F. The stir-frying can reduce hepatorenal toxicity of Fructus Tribuli by inactivating β-glucosidase and inhibiting the conversion of furostanol saponins to spirostanol saponins. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Sun XC, Song X, Guo F, Yuan YH, Wang SY, Wang S, Liu KL, Lv XY, Han B, Zhang C, Liu JT. Terrestrosin D, a spirostanol saponin from Tribulus terrestris L. with potential hepatorenal toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114716. [PMID: 34626781 DOI: 10.1016/j.jep.2021.114716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Tribuli (FT) has been commonly used as a traditional medicine for thousands of years. With the diverse uses of FT, more attention has been paid to its hepatorenal toxicity. However, the compounds causing the hepatorenal toxicity of FT remain undetermined. Terrestrosin D (TED), a major spirostanol saponin isolated from FT, may exert hepatorenal toxicity. AIM OF THE STUDY This study aimed to evaluate the potential hepatorenal toxicity of TED, and preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. MATERIALS AND METHODS Cytotoxicity assays, a repeated-dose 28-day in-vivo study, a toxicokinetic study, and a tissue distribution study were used to evaluate the potential hepatorenal toxicity of TED. Furthermore, network pharmacology was applied to preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. RESULTS Both the in vitro and in vivo studies showed that the spirostanol saponin TED had potential hepatorenal toxicity. Nonetheless, hepatorenal toxicity induced by oral treatment with TED at a dosage range of 5 - 15 mg/kg daily for 28 consecutive days to Sprague-Dawley (SD) rats was reversible after 14 days of TED withdrawal. The toxicokinetic study demonstrated that the systematic exposure of SD rats to TED had an accumulation phenomenon and a dose-dependent trend after a 28-day repeated-dose oral administration. The tissue distribution study revealed that TED had a targeted distribution in the liver and kidneys accompanied by a phenomenon of accumulation in SD rats. Network pharmacology combined with molecular docking methods was used to screen for the key targets (HSP90AA1, CNR1, and DRD2) and the key pathways of TED-induced hepatorenal toxicity. CONCLUSIONS The spirostanol saponin TED, a major spirostanol saponin isolated from FT, had potential hepatorenal toxicity.
Collapse
Affiliation(s)
- Xiao-Chen Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Fei Guo
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yao-Hui Yuan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shu-Yue Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kun-Lin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xi-Yu Lv
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bing Han
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang-Ting Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|