1
|
Xu Y, Dong X, Qin C, Wang F, Cao W, Li J, Yu Y, Zhao L, Tan F, Chen W, Li N, He J. Metabolic biomarkers in lung cancer screening and early diagnosis (Review). Oncol Lett 2023; 25:265. [PMID: 37216157 PMCID: PMC10193366 DOI: 10.3892/ol.2023.13851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Late diagnosis is one of the major contributing factors to the high mortality rate of lung cancer, which is now the leading cause of cancer-associated mortality worldwide. At present, low-dose CT (LDCT) screening in the high-risk population, in which lung cancer incidence is higher than that of the low-risk population is the predominant diagnostic strategy. Although this has efficiently reduced lung cancer mortality in large randomized trials, LDCT screening has high false-positive rates, resulting in excessive subsequent follow-up procedures and radiation exposure. Complementation of LDCT examination with biofluid-based biomarkers has been documented to increase efficacy, and this type of preliminary screening can potentially reduce potential radioactive damage to low-risk populations and the burden of hospital resources. Several molecular signatures based on components of the biofluid metabolome that can possibly discriminate patients with lung cancer from healthy individuals have been proposed over the past two decades. In the present review, advancements in currently available technologies in metabolomics were reviewed, with particular focus on their possible application in lung cancer screening and early detection.
Collapse
Affiliation(s)
- Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chao Qin
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yiwen Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liang Zhao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
2
|
Kozłowska L, Santonen T, Duca RC, Godderis L, Jagiello K, Janasik B, Van Nieuwenhuyse A, Poels K, Puzyn T, Scheepers PTJ, Sijko M, Silva MJ, Sosnowska A, Viegas S, Verdonck J, Wąsowicz W. HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites 2022; 12:362. [PMID: 35448548 PMCID: PMC9032989 DOI: 10.3390/metabo12040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland;
| | - Radu Corneliu Duca
- Labotoire National de Santé (LNS), Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 3555 Dudelange, Luxembourg;
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Karolina Jagiello
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- Laboratoire National de Santé (LNS), Department of Health Protection, 3555 Dudelange, Luxembourg
| | - Katrien Poels
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Tomasz Puzyn
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Monika Sijko
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Dr. Ricardo Jorge (INSA), Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Anita Sosnowska
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisbon, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Wojciech Wąsowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | | | | |
Collapse
|
3
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
4
|
Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, Cheng LL. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2020; 16:339-362. [PMID: 31092915 DOI: 10.1038/s41585-019-0185-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary tests have been used as noninvasive, cost-effective tools for screening, diagnosis and monitoring of diseases since ancient times. As we progress through the 21st century, modern analytical platforms have enabled effective measurement of metabolites, with promising results for both a deeper understanding of cancer pathophysiology and, ultimately, clinical translation. The first study to measure metabolomic urinary cancer biomarkers using NMR and mass spectrometry (MS) was published in 2006 and, since then, these techniques have been used to detect cancers of the urological system (kidney, prostate and bladder) and nonurological tumours including those of the breast, ovary, lung, liver, gastrointestinal tract, pancreas, bone and blood. This growing field warrants an assessment of the current status of research developments and recommendations to help systematize future research.
Collapse
Affiliation(s)
- Sarah S Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Hohm
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Lindsey A Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Leo L Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Esteve-Puig R, Bueno-Costa A, Esteller M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 2020; 474:127-137. [PMID: 31991154 DOI: 10.1016/j.canlet.2020.01.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Although cancer was originally considered a disease driven only by genetic mutations, it has now been proven that it is also an epigenetic disease driven by DNA hypermethylation-associated silencing of tumor suppressor genes and aberrant histone modifications. Very recently, a third component has emerged: the so-called epitranscriptome understood as the chemical modifications of RNA that regulate and alter the activity of RNA molecules. In this regard, the study of genetic and epigenetic disruption of the RNA-modifying proteins is gaining momentum in advancing our understanding of cancer biology. Furthermore, the development of epitranscriptomic anticancer drugs could lead to new promising and unexpected therapeutic strategies for oncology in the coming years.
Collapse
Affiliation(s)
- Rosaura Esteve-Puig
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Godoy AT, Eberlin MN, Simionato AVC. Targeted metabolomics: Liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. Talanta 2019; 210:120640. [PMID: 31987192 DOI: 10.1016/j.talanta.2019.120640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
A notable change in the body fluids nucleosides of cancer patients has been actively highlighted in searches for new biomarkers to early cancer detection. For this reason, improvements of bioanalytical methods for these compounds focused on a noninvasive sampling trend are of great importance. Therefore, this work aimed firstly to develop efficient methods for nucleoside analysis in urine and serum by liquid chromatography-tandem mass spectrometry (LC-MS/MS), applying different strategies to quantify nine nucleosides, and further identify other untargeted nucleosides. Sample preparation was based on protein precipitation and affinity-solid phase extraction (SPE), whereas quantification was performed using a triple quadrupole (QqQ) mass analyzer operating in the selected reaction monitoring (SRM) mode. Surrogates matrices were proposed as an alternative to standard addition calibration. Specifically, to quantitate creatinine, a simple LC-MS/MS method was validated and used for normalization of urinary metabolites quantitation. To identify the other nucleosides, LC methods using different MS scans modes were evaluated on a quadrupole-time of flight (Q-TOF) or a hybrid triple quadrupole linear ion trap (Q-trap). Validation was performed for nucleosides quantification using the synthetic matrices of urine and serum, and selectivity, linearity, accuracy, reproducibility, matrix effect, LOD's and LOQ's were accessed, providing trustworthy results for bioanalysis purposes. Both LC-Q-Trap/MS and LC-Q-TOF/MS methods showed proper sensitivity for structural characterization on assays with urine and serum samples from healthy volunteers and could also be used in the identification of untargeted nucleosides. The investigated approaches delivered in-depth results and seem promising for future applications on urine and serum samples analyses aiming to validate nucleosides as cancer biomarkers.
Collapse
Affiliation(s)
- Adriana Teixeira Godoy
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil.
| | - Marcos Nogueira Eberlin
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil; Mackenzie Presbyterian University, MackMass Laboratory, Scholl of Engineering, 01302-907, São Paulo, SP, Brazil
| | - Ana Valéria Colnaghi Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Development and validation of a rapid LC–MS/MS method for determination of methylated nucleosides and nucleobases in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121775. [DOI: 10.1016/j.jchromb.2019.121775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
|
8
|
On-line trapping/capillary hydrophilic-interaction liquid chromatography/mass spectrometry for sensitive determination of RNA modifications from human blood. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Patejko M, Struck-Lewicka W, Siluk D, Waszczuk-Jankowska M, Markuszewski MJ. Urinary Nucleosides and Deoxynucleosides. Adv Clin Chem 2018; 83:1-51. [PMID: 29304899 DOI: 10.1016/bs.acc.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urinary nucleosides and deoxynucleosides are mainly known as metabolites of RNA turnover and oxidative damage of DNA. For several decades these metabolites have been examined for their potential use in disease states including cancer and oxidative stress. Subsequent improvements in analytical sensitivity and specificity have provided a reliable means to measure these unique molecules to better assess their relationship to physiologic and pathophysiologic conditions. In fact, some are currently used as antiviral and antitumor agents. In this review we provide insight into their molecular characteristics, highlight current separation techniques and detection methods, and explore potential clinical usefulness.
Collapse
|
10
|
Affiliation(s)
- Yang Yu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yuxiang Cui
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
11
|
Cheng T, Zhang Y, Liu X, Zhang X, Zhang H. A filter paper coated with phenylboronic acid-modified mesoporous silica for enrichment of intracellular nucleosides prior to their quantitation by HPLC. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Wan L, Zhu H, Guan Y, Huang G. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine. Talanta 2017; 169:209-215. [PMID: 28411814 DOI: 10.1016/j.talanta.2017.03.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/14/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
Abstract
A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL-1 and 0.0454-4.194μgL-1, respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample.
Collapse
Affiliation(s)
- Lingzhong Wan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Haijing Zhu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yafeng Guan
- Department of Instrumentation and Analytical Chemistry, Key Laboratory of Separation Science for Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei 230026, China.
| |
Collapse
|
13
|
Buzatto AZ, de Oliveira Silva M, Poppi RJ, Simionato AVC. Assessment of nucleosides as putative tumor biomarkers in prostate cancer screening by CE–UV. Anal Bioanal Chem 2017; 409:3289-3297. [DOI: 10.1007/s00216-017-0297-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022]
|
14
|
Metal oxide-based dispersive solid-phase extraction coupled with mass spectrometry analysis for determination of ribose conjugates in human follicular fluid. Talanta 2017; 167:506-512. [PMID: 28340751 DOI: 10.1016/j.talanta.2017.02.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. The pathogenesis of PCOS remains unclear and early diagnosis of PCOS is challenging. Follicular fluid provides a unique window in the critical processes during oocyte and follicular maturation, and the metabolic level of follicular fluid has important impact on the developmental potential of oocytes and subsequent embryos. Previous studies demonstrated some modified ribonucleosides in biological fluids were diseases related metabolites. In this respect, analysis of endogenous modified ribonucleosides in follicular fluids will facilitate the investigation of follicular development. Here, we developed a strategy for determination of ribose conjugates from follicular fluid using metal oxide-based dispersive solid-phase extraction (DSPE) coupled with liquid chromatography-multiple reaction monitoring-mass spectrometry analysis (DSPE-LC-MRM-MS/MS). Cerium dioxide (CeO2) was used to selectively recognize and capture cis-diol containing ribose conjugates from complex biological samples under basic environment. The trapped ribose conjugates were then easily released under acidic environment. The results showed that 50 potential ribose conjugates were detected in follicular fluid by the developed DSPE-LC-MRM-MS/MS method. We then further investigated the contents change of the detected ribose conjugates in follicular fluid from PCOS patients. The results indicated that the follicular fluid from healthy controls and PCOS patients can be clearly differentiated with the partial least squares-discriminate analysis (PLS-DA) based on the detected ribose conjugates. In addition, the contents of 8 ribose conjugates were significantly different between PCOS patients and healthy controls, which could potentially serve as the indicator of PCOS.
Collapse
|
15
|
Detection of 1,N2-propano-2′-deoxyguanosine in human urine by stable isotope dilution UHPLC–MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1023-1024:68-71. [DOI: 10.1016/j.jchromb.2016.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 11/18/2022]
|
16
|
Fan H, Chen P, Wang C, Wei Y. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides. J Chromatogr A 2016; 1448:20-31. [PMID: 27130580 DOI: 10.1016/j.chroma.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications.
Collapse
Affiliation(s)
- Hua Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Peihong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
17
|
Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med (Maywood) 2016; 241:783-99. [PMID: 27013544 DOI: 10.1177/1535370216638770] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
18
|
A column-switching LC–MS/MS method for simultaneous quantification of biomarkers for 1,3-butadiene exposure and oxidative damage in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:123-9. [DOI: 10.1016/j.jchromb.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 01/30/2023]
|
19
|
Buzatto AZ, Guedes SF, de Oliveira Silva M, Gallafrio JM, Simionato AVC. Higher detectability method for the analysis of nucleosides, putative tumor biomarkers, in blood serum samples by CE-UV with reversed EOF. Electrophoresis 2015; 36:2968-75. [DOI: 10.1002/elps.201500161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/03/2015] [Accepted: 07/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Adriana Zardini Buzatto
- Laboratory of Biomolecules Analysis Tiselius (LABi Tiselius), Department of Analytical Chemistry, Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
| | - Sumaya Ferreira Guedes
- Laboratory of Biomolecules Analysis Tiselius (LABi Tiselius), Department of Analytical Chemistry, Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
| | - Mariana de Oliveira Silva
- Laboratory of Biomolecules Analysis Tiselius (LABi Tiselius), Department of Analytical Chemistry, Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
| | - Jéssica Mirela Gallafrio
- Laboratory of Biomolecules Analysis Tiselius (LABi Tiselius), Department of Analytical Chemistry, Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Biomolecules Analysis Tiselius (LABi Tiselius), Department of Analytical Chemistry, Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Chemistry Institute; Campinas State University (UNICAMP); Campinas SP Brazil
| |
Collapse
|
20
|
Chu JM, Qi CB, Huang YQ, Jiang HP, Hao YH, Yuan BF, Feng YQ. Metal Oxide-Based Selective Enrichment Combined with Stable Isotope Labeling-Mass Spectrometry Analysis for Profiling of Ribose Conjugates. Anal Chem 2015; 87:7364-72. [DOI: 10.1021/acs.analchem.5b01614] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jie-Mei Chu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Chu-Bo Qi
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
- Department
of Pathology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Yun-Qing Huang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Han-Peng Jiang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yan-Hong Hao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bi-Feng Yuan
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yu-Qi Feng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
21
|
Jiang HP, Qi CB, Chu JM, Yuan BF, Feng YQ. Profiling of cis-diol-containing nucleosides and ribosylated metabolites by boronate-affinity organic-silica hybrid monolithic capillary liquid chromatography/mass spectrometry. Sci Rep 2015; 5:7785. [PMID: 25585609 PMCID: PMC4293604 DOI: 10.1038/srep07785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5′-deoxy-5′-methylthioadensine, N4-acetylcytidine, 1-ribosyl-N-propionylhistamine and N2,N2,7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers.
Collapse
Affiliation(s)
- Han-Peng Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- 1] Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China [2] Department of Pathology, Hubei Cancer Hospital, Wuhan 430079, China
| | - Jie-Mei Chu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Beretov J, Wasinger VC, Schwartz P, Graham PH, Li Y. A standardized and reproducible urine preparation protocol for cancer biomarkers discovery. BIOMARKERS IN CANCER 2014; 6:21-7. [PMID: 25452700 PMCID: PMC4219630 DOI: 10.4137/bic.s17991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022]
Abstract
A suitable and standardized protein purification technique is essential to maintain consistency and to allow data comparison between proteomic studies for urine biomarker discovery. Ultimately, efforts should be made to standardize urine preparation protocols. The aim of this study was to develop an optimal analytical protocol to achieve maximal protein yield and to ensure that this method was applicable to examine urine protein patterns that distinguish disease and disease-free states. In this pilot study, we compared seven different urine sample preparation methods to remove salts, and to precipitate and isolate urinary proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles showed that the sequential preparation of urinary proteins by combining acetone and trichloroacetic acid (TCA) alongside high speed centrifugation (HSC) provided the best separation, and retained the most urinary proteins. Therefore, this approach is the preferred method for all further urine protein analysis.
Collapse
Affiliation(s)
- Julia Beretov
- Cancer Care Centre, St George Hospital, Gray St, Kogarah, NSW, Australia. ; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, NSW, Australia. ; SEALS, Anatomical Pathology, St George Hospital, Gray St, Kogarah, NSW, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Peter Schwartz
- Breast Surgery, St George Private Hospital, South St, Kogarah, NSW, Australia
| | - Peter H Graham
- Cancer Care Centre, St George Hospital, Gray St, Kogarah, NSW, Australia. ; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Gray St, Kogarah, NSW, Australia. ; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, NSW, Australia
| |
Collapse
|
23
|
Li Y, Yu H, Zhao W, Xu X, Zhou J, Xu M, Gao W, Yuan G. Analysis of urinary methylated nucleosides of patients with coronary artery disease by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2054-2058. [PMID: 25156594 DOI: 10.1002/rcm.6986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 07/13/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE In recent years, methylated nucleosides have been considered to be potential biomarkers to human diseases. The early diagnosis of coronary artery disease (CAD) is an unsolved problem in clinical cardiology. The aim of our study is to evaluate whether urinary methylated nucleosides can serve as useful biomarkers for CAD. METHODS A solid-phase extraction (SPE) column was used for extraction and purification of methylated nucleosides in urine, and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) was employed for specific, sensitive and rapid determination of the urinary methylated nucleosides from patients with cardiac events. RESULTS We have analyzed six methylated nucleosides (N(3)-methylcytidine, N(1)-methyladenosine, N(6)-methyladenosine, N(2)-methylguanosine, N(1)-methylguanosine and N(2),N(2)-dimethylguanosine) in urine from 51 patients with CAD and 25 non-CAD controls by HPLC/ESI-MS/MS using selective reaction monitoring (SRM). Our results have shown that there were significant differences in the N(6)-methyladenosine levels from the patients and the non-CAD controls in the urine analyzed. CONCLUSIONS The results have indicated that HPLC/ESI-MS/MS is a highly specific and sensitive tool to measure urinary methylated nucleosides for analysis of CAD. Our result has revealed that the evaluation of urinary methylated nucleosides might be helpful in the analysis of CAD by liquid chromatography/mass spectrometry. Therefore, this N(6)-methyladenosine is worthy of further studies in the near future.
Collapse
Affiliation(s)
- Yanru Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiao X, Mo Y, Wu Y, He J, Zhang P, Hu R, Luo C, Du J, Fu J, Shi J, Zhou L, Li D. Upregulated plasma and urinary levels of nucleosides as biological markers in the diagnosis of primary gallbladder cancer. J Sep Sci 2014; 37:3033-44. [PMID: 25137411 DOI: 10.1002/jssc.201400638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022]
Abstract
We first detected aberrant nucleoside levels in the plasma, urine, bile, and tissues from cases and controls to explore them as biomarkers in the diagnosis of gallbladder cancer. Reversed-phase high-performance liquid chromatography was used to assess the levels of ten nucleosides in these samples from gallbladder cancer patients, gallstone patients, and healthy controls. Plasma and urine samples were collected from patients with gallbladder cancer (n = 202), patients with gallstones (n = 203), and healthy controls (n = 205); bile and tissue samples were collected from 91 gallbladder cancer patients, 93 gallstone patients; and 90 were donated after cardiac death. Of the ten nucleosides analyzed, eight urinary nucleosides, five plasma nucleosides, three bile nucleosides, and one tissue nucleoside were significantly upregulated in the gallbladder cancer patients compared to control groups (p < 0.05). Among these upregulated nucleosides, the sensitivity, specificity, and accuracy of urinary nucleosides in the diagnosis of gallbladder cancer patients were 89.4, 97.1, and 95.7%, respectively, those of plasma nucleosides were 91.2, 95.6, and 94.2%, respectively, those of bile nucleosides were 95.3, 96.4, and 95.1%, respectively, and those of tissue nucleosides were 86.2, 93.8, and 92.6%, respectively. These results suggest that nucleosides may be as useful as biological markers for gallbladder cancer.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Silva C, Cavaco C, Perestrelo R, Pereira J, Câmara JS. Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites 2014; 4:71-97. [PMID: 24958388 PMCID: PMC4018671 DOI: 10.3390/metabo4010071] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/18/2022] Open
Abstract
For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.
Collapse
Affiliation(s)
- Catarina Silva
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
26
|
Lo WY, Jeng LB, Lai CC, Tsai FJ, Lin CT, Chen WTL. Urinary cytidine as an adjunct biomarker to improve the diagnostic ratio for gastric cancer in Taiwanese patients. Clin Chim Acta 2014; 428:57-62. [DOI: 10.1016/j.cca.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
|
27
|
Beretov J, Wasinger VC, Graham PH, Millar EK, Kearsley JH, Li Y. Proteomics for breast cancer urine biomarkers. Adv Clin Chem 2014; 63:123-67. [PMID: 24783353 DOI: 10.1016/b978-0-12-800094-6.00004-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the survival of breast cancer (BC) patients has increased over the last two decades due to improved screening programs and postoperative adjuvant systemic therapies, many patients die from metastatic relapse. Current biomarkers used in the clinic are not useful for the early detection of BC, or monitoring its progression, and have limited value in predicting response to treatment. The development of proteomic techniques has sparked new searches for novel protein markers for many diseases including BC. Proteomic techniques allow for a high-throughput analysis of samples with the visualization and quantification of thousands of potential protein and peptide markers. Human urine is one of the most interesting and useful biofluids for routine testing and provides an excellent resource for the discovery of novel biomarkers, with the advantage over tissue biopsy samples due to the ease and less invasive nature of collection. In this review, we summarize the results from studies where urine was used as a source for BC biomarker research and discuss urine sample preparation, its advantage, challenges, and limitation. We focus on the gel-based proteomic approaches as well as the recent development of quantitative techniques in BC urine biomarker detection. Finally, the future use of modern proteomic techniques in BC biomarker identification will be discussed.
Collapse
|
28
|
Kartsova LA, Obedkova EV. Chromatographic and electrophoretic profiles of biologically active compounds for the diagnosis of various diseases. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813040035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Development and validation of a hydrophilic interaction chromatography-tandem mass spectrometry method with on-line polar extraction for the analysis of urinary nucleosides. Potential application in clinical diagnosis. J Chromatogr A 2011; 1218:9055-63. [PMID: 22056237 DOI: 10.1016/j.chroma.2011.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
The present paper describes the development, validation and application of a quantitative method for the determination of endogenous nucleosides and nucleobases in urine based on the on-line coupling of a solid-phase extraction step with hydrophilic interaction chromatography-tandem mass spectrometry. The method combines the use of a highly polar restricted-access material (RAM), based on an N-vinylacetamide copolymer, for efficient analyte extraction and matrix removal, with separation by zwitterionic hydrophilic interaction chromatography (ZIC-HILIC), that revealed a satisfactory retention of the polar analytes studied. Detection using a triple quadrupole analyser allowed reliable identification and high-sensitivity quantitation of the target compounds. The on-line configuration developed, RAM-ZIC-HILIC-MS/MS, provides a convenient approach to automate the application to urine analysis, with minimum sample manipulation. The whole method was validated according to European Legislation for bioanalytical methods. The validation steps included the verification of matrix effects, calibration curve, precision, accuracy, selectivity, stability and carry-over in real samples. The results of the validation process revealed that the proposed method is suitable for the reliable determination of nucleosides and nucleobases in human urine, showing limits of detection from 0.1 to 1.3 ng mL(-1). The application to clinical samples was also checked; the results obtained in analyses of urine samples from healthy volunteers and cancer patients using Principal Component Analysis, Hierarchical Cluster Analysis and Soft Independent Modeling of Class Analogy are also shown.
Collapse
|
30
|
Analysis of urinary nucleosides as potential tumor markers in human breast cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin Chim Acta 2011; 412:1861-6. [DOI: 10.1016/j.cca.2011.06.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/19/2011] [Accepted: 06/21/2011] [Indexed: 02/08/2023]
|
31
|
Struck W, Waszczuk-Jankowska M, Kaliszan R, Markuszewski MJ. The state-of-the-art determination of urinary nucleosides using chromatographic techniques "hyphenated" with advanced bioinformatic methods. Anal Bioanal Chem 2011; 401:2039-50. [PMID: 21359827 PMCID: PMC3175040 DOI: 10.1007/s00216-011-4789-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
Abstract
Over the last decade metabolomics has gained increasing popularity and significance in life sciences. Together with genomics, transcriptomics and proteomics, metabolomics provides additional information on specific reactions occurring in humans, allowing us to understand some of the metabolic pathways in pathological processes. Abnormal levels of such metabolites as nucleosides in the urine of cancer patients (abnormal in relation to the levels observed in healthy volunteers) seem to be an original potential diagnostic marker of carcinogenesis. However, the expectations regarding the diagnostic value of nucleosides may only be justified once an appropriate analytical procedure has been applied for their determination. The achievement of good specificity, sensitivity and reproducibility of the analysis depends on the right choice of the phases (e.g. sample pretreatment procedure), the analytical technique and the bioinformatic approach. Improving the techniques and methods applied implies greater interest in exploration of reliable diagnostic markers. This review covers the last 11 years of determination of urinary nucleosides conducted with the use of high-performance liquid chromatography in conjunction with various types of detection, sample pretreatment methods as well as bioinformatic data processing procedures.
Collapse
Affiliation(s)
- Wiktoria Struck
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | | | | | | |
Collapse
|
32
|
Gas chromatography–mass spectrometry-based simultaneous quantitative analytical method for urinary oxysterols and bile acids in rats. Anal Biochem 2011; 408:242-52. [DOI: 10.1016/j.ab.2010.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
|
33
|
Roux A, Lison D, Junot C, Heilier JF. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clin Biochem 2011; 44:119-35. [DOI: 10.1016/j.clinbiochem.2010.08.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 01/01/2023]
|
34
|
Szymańska E, Markuszewski MJ, Markuszewski M, Kaliszan R. Altered levels of nucleoside metabolite profiles in urogenital tract cancer measured by capillary electrophoresis. J Pharm Biomed Anal 2010; 53:1305-12. [DOI: 10.1016/j.jpba.2010.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
35
|
Markuszewski MJ, Struck W, Waszczuk-Jankowska M, Kaliszan R. Metabolomic approach for determination of urinary nucleosides as potential tumor markers using electromigration techniques. Electrophoresis 2010; 31:2300-10. [PMID: 20564268 DOI: 10.1002/elps.200900785] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the postgenome-sequencing era, several large projects have been running recently. Proteomics and other analysis or structural biology are the most active today. Since the late 1990 s, metabolomics has been gaining importance in systems biology, as it provides real-world end points that complement and help in the interpretation of genomic and proteomic data. Comprehensive information about the level changes of numerous metabolites present in the analyzed samples is essential in metabolomic studies. Therefore, the applied analytical techniques must be suitable for the simultaneous analysis of a diverse range of low-molecular-mass endogenous metabolites such as nucleosides at various concentrations and in different matrices, in particular, in urine and serum. In the view of metabolomic study, this domain is obviously significant to understand specific humans' reactions and it can be perceived as a diagnostic and predictive tool in pathological reactions. Since the term "metabolom" has occurred in common scientific use, there have been many publications about possible ways of analysis of nucleosides as metabolites of either oxidative DNA damage or RNA's turnover that are used as the potential tumor markers. Besides, the availability of fast, reproducible and easy to apply analytical techniques that would allow the identification of a large number of metabolites is highly desirable since they may provide detailed information about the progression of a pathological process. This paper, which describes the most relevant electromigration techniques, covers the period starting from the review of Karl H. Schram (Mass Spectrom. Rev. 1998, 17, 131-251) up to the beginning of 2009.
Collapse
Affiliation(s)
- Michal J Markuszewski
- Department of Toxicology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | | | | | | |
Collapse
|
36
|
Evans MD, Saparbaev M, Cooke MS. DNA repair and the origins of urinary oxidized 2'-deoxyribonucleosides. Mutagenesis 2010; 25:433-42. [PMID: 20522520 DOI: 10.1093/mutage/geq031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring oxidative stress in vivo is made easier by the ability to use samples obtained non-invasively, such as urine. The analysis of DNA oxidation, by measurement of oxidized 2'-deoxyribonucleosides in urine, particularly 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), has been reported extensively in the literature in many situations relating to various pathologies, populations and environmental exposures. Understanding the origins of urinary 8-oxodG, other than it simply being a marker of DNA oxidation or its synthetic precursors, is important to being able to effectively interpret differences in baseline urinary 8-oxodG levels between subject groups and changes in excretion. Diet and cell turnover play negligible roles in contributing to urinary 8-oxodG levels, leaving DNA repair as a primary source of this lesion. However, which repair processes contribute, and to what extent, to urinary 8-oxodG is still open to question. The most rational source would be the activity of selected members of the Nudix hydrolase family of enzymes, sanitizing the deoxyribonucleotide pool via the degradation of 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-triphosphate and 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-diphosphate, yielding mononucleotide products that can then be dephosphorylated to 8-oxodG and excreted. However, nucleotide excision repair (NER), transcription-coupled repair, nucleotide incision repair (NIR), mismatch repair and various exonuclease activities, such as proofreading function associated with DNA polymerases, can all feasibly generate initial products that could yield 8-oxodG after further metabolism. A recent study implying that a significant proportion of genomic 8-oxodG exists in the context of tandem lesions, refractory to repair by glycosylases, suggests the roles of NER and/or NIR remain to be further examined and defined as a source of 8-oxodG. 8-OxodG has been the primary focus of investigation, but other oxidized 2'-deoxyribonucleosides have been detected in urine, 2'-deoxythymidine glycol and 5-hydroxymethyl-2'-deoxyuridine; the origins of these compounds in urine, however, are presently even more speculative than for 8-oxodG.
Collapse
Affiliation(s)
- Mark D Evans
- Radiation and Oxidative Stress Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
37
|
Lee MS, Jung BH, Chung BC, Cho SH, Kim KY, Kwon OS, Nugraha B, Lee YJ. Metabolomics study with gas chromatography-mass spectrometry for predicting valproic acid-induced hepatotoxicity and discovery of novel biomarkers in rat urine. Int J Toxicol 2009; 28:392-404. [PMID: 19605889 DOI: 10.1177/1091581809340329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Three different doses of valproic acid (20, 100, and 500 mg/kg/d) are administered orally to Sprague-Dawley rats for 5 days, and the feasibility of metabolomics with gas chromatography-mass spectrometry as a predictor of the hepatotoxicity of valproic acid is evaluated. Body weight is found to decrease with the 100-mg/kg/d dose and significantly decrease with the 500-mg/kg/d dose. Mean excreted urine volume is lowest in the 500-mg/kg/d group among all groups. The plasma level of alpha-glutathione-S-transferase, a sensitive and earlier biomarker for hepatotoxicity, increases significantly with administration of 100 and 500 mg/kg/d; however, there is not a significant difference in alpha-glutathione-S-transferase plasma levels between the control and 20-mg/kg/d groups. Clusters in partial least squares discriminant analysis score plots show similar patterns, with changes in physiological conditions and plasma levels of alpha-glutathione-S-transferase; the cluster for the control and 20-mg/kg/d groups does not clearly separate, but the clusters are separate for 100- and 500-mg/kg/d groups. A biomarker of hepatotoxicity, 8-hydroxy-2'-deoxyguanosine and octanoylcarnitine, is identified from nontargeted and targeted metabolic profiling. These results validate that metabolic profiling using gas chromatography-mass spectrometry could be a useful tool for finding novel biomarkers. Thus, a nontargeted metabolic profiling method is established to evaluate the hepatotoxicity of valproic acid and demonstrates proof-of-concept that metabolomic approach with gas chromatography-mass spectrometry has great potential for predicting valproic acid-induced hepatotoxicity and discovering novel biomarkers.
Collapse
Affiliation(s)
- Min Sun Lee
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jeng LB, Lo WY, Hsu WY, Lin WD, Lin CT, Lai CC, Tsai FJ. Analysis of urinary nucleosides as helper tumor markers in hepatocellular carcinoma diagnosis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1543-1549. [PMID: 19399767 DOI: 10.1002/rcm.4034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common neoplasm in Taiwan, for which early diagnosis is difficult and the prognosis is usually poor. HCC is usually diagnosed by abdominal sonography and serum alpha-fetoprotein (AFP) detection. Modified nucleosides, regarded as indicators for the whole-body turnover of RNAs, are excreted in abnormal amounts in the urine of patients with malignancies and can serve as tumor markers. We analyzed the excretion patterns of urinary nucleosides from 25 HCC patients and 20 healthy volunteers by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) under optimized conditions. The HPLC/ESI-MS/MS approach with selective reaction monitoring (SRM) allowed for the sensitive determination of nucleosides in human urine samples. The mean levels of the urinary nucleosides adenosine, cytidine, and inosine were significantly higher in HCC patients than healthy volunteers (average of 1.78-, 2.26-, and 1.47-fold, respectively). However, the mean levels of urinary 1-methyladenosine, 3-methylcytidine, uridine, and 2'-deoxyguanosine were not significantly different. Combined with the determination of serum AFP levels, the higher levels of urinary adenosine, cytidine, and inosine may be additional diagnosis markers for HCC in Taiwanese patients.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cho SH, Choi MH, Kwon OS, Lee WY, Chung BC. Metabolic significance of bisphenol A-induced oxidative stress in rat urine measured by liquid chromatography-mass spectrometry. J Appl Toxicol 2009; 29:110-7. [DOI: 10.1002/jat.1387] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin Biochem 2009; 42:540-3. [PMID: 19186175 DOI: 10.1016/j.clinbiochem.2008.12.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 12/01/2008] [Accepted: 12/29/2008] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Evaluation of altered urinary nucleosides before and after tumor removal of breast cancer (BCa). DESIGN AND METHODS Targeted metabolite profiling of 14 urinary nucleosides was conducted with both pre- and post-operative female patients with BCa (n=150, age: 46.6+/-7.7 years), and female controls (n=150, age: 46.8+/-7.7 years) by liquid chromatography-tandem mass spectrometry coupled to on-line extraction. RESULTS Levels of modified nucleosides (5-hydroxymethyl-2'-deoxyuridine, P<0.001; 8-hydroxy-2'-deoxyguanosine, P<0.001; 1-methyladenosine, P<0.02; N(2),N(2)-dimethylguanosine, P<0.001) were significantly higher in pre-operative patients than in both normal controls and post-operative patients. CONCLUSIONS This approach could be used to further understand the pathogenesis of BCa as well as to evaluate the effects of medical treatment.
Collapse
|
41
|
Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC. Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clin Chim Acta 2008; 400:63-9. [PMID: 19010317 DOI: 10.1016/j.cca.2008.10.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND The metabolomic approaches for mining biomarkers of women's cancers based on gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry combined with partial least squares-discriminant analysis are described. METHODS To identify urinary potential biomarkers, the qualitative and quantitative analyses were introduced with 10 breast, 9 ovarian and 12 cervical cancer patients as well as 22 normal controls, which were considered with their ages and menopausal state. RESULTS For comprehensive metabolomic approaches, the non-targeted qualitative profiling was first achieved to get metabolic patterns of collected samples and the targeted quantitative analysis focused on hormonal metabolism was also conducted. Two known biomarkers, i.e., 5-hydroxymethyl-2-deoxyuridine and 8-hydroxy-2-deoxyguanosine, in breast cancer were also confirmed using the present methods. In addition, 3 potential biomarkers for ovarian cancer i.e. 1-methyladenosine, 3-methyluridine, and 4-androstene-3,17-dione, which were categorized in significantly increased level using one way of variance analysis (p<0.05), were identified as quantitatively targeted metabolites with pattern analysis. The cancer markers identified in this study are highly related to metabolites which are responsible for oxidative DNA damage and DNA methylation process. CONCLUSION The present metabolomic approaches are not only useful for diagnostic tools and patient stratification, but may be mapped on metabolic network to reflect disease states.
Collapse
Affiliation(s)
- Han Min Woo
- Life Sciences Division, Korea Institute of Science and Technology, 39-1 Hawolkok-dong, Seoul 136-791, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li HY, Wang SM, Liu HM, Li J, Han D, Bu SS, Zhang MZ. Analysis of modified nucleosides in the urine of patients with malignant cancer by liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3161-3171. [PMID: 18798199 DOI: 10.1002/rcm.3721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As modified nucleosides reflect altered tRNA turnover which seems to be impaired in the body of cancer patients, they have been evaluated as potential tumor markers. High-performance liquid chromatography/electrosprary ionization quadrupole time-of-flight mass spectrometry (HPLC/ESI-Q-TOFMS) was used to identify nucleosides purified from urine in positive ionization mode. Potential nucleosides were assessed by their evident UV absorbance in HPLC and then further examined by mass spectrometric techniques. In this manner, 21 nucleosides were detected in the urine of a patient with lymphoid cancer including three modified nucleosides 5'-dehydro-2-deoxyinosine, N1,N2,N7-trimethylguanosine and N1-methyl-N2-ethylguanosine, which had never been reported previously.
Collapse
Affiliation(s)
- Hua-Yu Li
- Department of Chemistry, Zhengzhou University, 100 Science Road, 450001 Zhengzhou, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Molecularly imprinted polymer of 5-methyluridine for solid-phase extraction of pyrimidine nucleoside cancer markers in urine. Bioorg Med Chem 2008; 16:8932-9. [PMID: 18789867 DOI: 10.1016/j.bmc.2008.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/15/2008] [Accepted: 08/26/2008] [Indexed: 11/23/2022]
Abstract
Normal and modified urinary nucleosides represent potential biomarkers for cancer diagnosis. To selectively extract modified nucleosides, we developed a molecularly imprinted polymer (MIP) of 5-methyluridine as selective material for molecularly imprinted solid-phase extraction (MISPE). The MIPs were obtained from vinyl-phenylboronate ester derivative of the template, acrylamide and pentaerythritol triacrylate co-polymer, and were tested in batch and cartridge experiments with aqueous samples. Our results indicated that the imprinted polymer was selective for pyrimidine nucleosides with a K(d) and a B(max) of 46 microM and 18 micromol/g, respectively. Finally, a MISPE of the most common pyrimidine nucleoside cancer markers in urine sample was realized.
Collapse
|
44
|
Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F. Mass spectrometry-based "omics" technologies in cancer diagnostics. MASS SPECTROMETRY REVIEWS 2007; 26:403-31. [PMID: 17405143 DOI: 10.1002/mas.20132] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many "omics" techniques have been developed for one goal: biomarker discovery and early diagnosis of human cancers. A comprehensive review of mass spectrometry-based "omics" approaches performed on various biological samples for molecular diagnosis of human cancers is presented in this article. Furthermore, the existing and potential problems/solutions (both de facto experimental and bioinformatic challenges), and future prospects have been extensively discussed. Although the use of present omic methods as diagnostic tools are still in their infant stage and consequently not ready for immediate clinical use, it can be envisaged that the "omics"-based cancer diagnostics will gradually enter into the clinic in next 10 years as an important supplement to current clinical diagnostics.
Collapse
Affiliation(s)
- Xuewu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
45
|
Wang S, Zhao X, Mao Y, Cheng Y. Novel approach for developing urinary nucleosides profile by capillary electrophoresis–mass spectrometry. J Chromatogr A 2007; 1147:254-60. [PMID: 17336316 DOI: 10.1016/j.chroma.2007.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/19/2022]
Abstract
A simple, rapid and efficient capillary electrophoresis-mass spectrometry (CE-MS) method was developed to analyze urinary nucleosides for the first time. The composition of CE buffer and MS parameters were systematically optimized. The optimum buffer was 150 mM acetic acid containing 15% methanol and 15% ethanol. The optimum MS parameters were: methanol containing 0.5% acetic acid was selected as the sheath liquid and the flow rate was 5 microL/min; the flow rate and temperature of drying gas were 6L/min and 150 degrees C, respectively; the pressure of nebulizing gas was 2 psig; and the fragmentor and ESI voltage were 100 V and 4000 V, respectively. Under the optimum CE-MS conditions, the urinary nucleosides were separated within 18 min. The linearity between the relative peak areas and the corresponding concentration of nine nucleosides markers were excellent. The limits of detection (S/N=3) of markers were 0.00862-3.82 nmol/mL. The optimum CE-MS method was applied to analyze urine from 20 bladder cancer patients and 20 healthy volunteers. Considering the standards of many nucleosides cannot be obtained, it is not the ratios of the concentrations of nucleosides to that of creatinine in the literatures, but the ratios of the relative peak area of nucleosides to the concentration of creatinine that used for pattern recognition. And, the statistical analysis result indicated this method was feasible.
Collapse
Affiliation(s)
- Shufang Wang
- Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|