1
|
Hua Y, Liu S, Xie SS, Shi L, Li J, Luo Q. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine-Lysine Peptide Stapling. Org Lett 2023; 25:8792-8796. [PMID: 38059767 DOI: 10.1021/acs.orglett.3c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A heterobifunctional cross-linker with one sulfhydryl-reactive dinitroimidazole end and another amine-reactive N-hydroxysuccinimide (NHS) ester end was designed and synthesized. The two motifs of this cross-linker, dinitroimidazole and NHS ester, proved to react with thiol and amine, respectively, in an orthogonal way. The cross-linker was further applied to construct stapled peptides of different sizes and mono- and dual functionalization (including biotinylation, PEGylation, and fluorescence labeling) of protein.
Collapse
Affiliation(s)
- Yaoguang Hua
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shuli Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China
| | - Linjing Shi
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Juncheng Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
2
|
Hirata Y, Hashimoto T, Ando K, Kamatari YO, Takemori H, Furuta K. Structural features localizing the ferroptosis inhibitor GIF-2197-r to lysosomes. RSC Adv 2023; 13:32276-32281. [PMID: 37928844 PMCID: PMC10620646 DOI: 10.1039/d3ra06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
We previously reported that N,N-dimethylaniline derivatives are potent ferroptosis inhibitors. Among them, the novel aminoindan derivative GIF-2197-r (the racemate of GIF-2115 (R-form) and GIF-2196 (S-form)) is effective at a concentration of 0.01 μM due to its localization to lysosomes and ferrous ion coordination capacity. The current study demonstrates that the aliphatic tertiary amine moiety of GIF-2197-r is responsible for lysosomal localization. Although N,N-dimethylaniline derivatives cannot form chelate structures with Fe2+, density functional theory computation demonstrates that they can form stable monodentate complexes with a hydrated ferrous ion, likely due to the highly electron-rich nature of the (dialkylamino)phenyl ring. Furthermore, the results suggest that the aliphatic tertiary amine moiety contributes to stabilizing the complexation. These findings could prove useful for developing improved lysosomotropic ferroptosis inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoko Hirata
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
| | - Tomohiro Hashimoto
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kaori Ando
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Yuji O Kamatari
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
- Graduate School of Natural Science and Technology, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| |
Collapse
|
3
|
Dutta A, Maiti D, Katarkar A, Sasmal M, Khatun R, Moni D, Habibullah M, Ali M. N-Nitrosation Based Fluorescence Turn-On Nitric Oxide Probe: Kinetic and Cell Imaging Studies. ACS APPLIED BIO MATERIALS 2023; 6:3266-3277. [PMID: 37556766 DOI: 10.1021/acsabm.3c00362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.g., dehydroascorbic acid and methylglyoxal etc.) and some other reactive oxygen/nitrogen species (ROS/RNS), especially with o-phenylenediamine (OPD) based fluorosensors. To avoid these limitations, NO sensors should be designed in such a way that they react spontaneously with NO to give turn-on response within the time frame of t1/2 (typically in the range of 0.1-10 s) of NO and λem in the visible wavelength along with good cell permeability to achieve biocompatibility. With these views in mind, a N-nitrosation based fluorescent sensor, NDAQ, has been developed that is highly selective to NO with ∼27-fold fluorescence enhancement at λem = 542 nm with high sensitivity (LOD = 7 ± 0.4 nM) and shorter response time, eliminating the interference of other reactive species (RCS/ROS/RNS). Furthermore, all the photophysical studies with NDAQ have been performed in 98% aqueous medium at physiological pH, indicating its good stability under physiological conditions. The kinetic assay illustrates the second-order dependency with respect to NO concentration and first-order dependency with respect to NDAQ concentration. The biological studies reveal the successful application of the probe to track both endogenous and exogenous NO in living organisms.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Debjani Maiti
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Rousunara Khatun
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Mansur Habibullah
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
4
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
5
|
Ciccone L, Nencetti S, Marino M, Battocchio C, Iucci G, Venditti I, Marsotto M, Montalesi E, Socci S, Bargagna B, Orlandini E. Pterostilbene fluorescent probes as potential tools for targeting neurodegeneration in biological applications. J Enzyme Inhib Med Chem 2022; 37:1812-1820. [PMID: 35758192 PMCID: PMC9246042 DOI: 10.1080/14756366.2022.2091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several epidemiological studies suggest that a diet rich in fruit and vegetables reduces the incidence of neurodegenerative diseases. Resveratrol (Res) and its dimethylated metabolite, pterostibene (Ptb), have been largely studied for their neuroprotective action. The clinical use of Res is limited because of its rapid metabolism and its poor bioavailability. Ptb with two methoxy groups and one hydroxyl group has a good membrane permeability, metabolic stability and higher in vivo bioavailability in comparison with Res. The metabolism and pharmacokinetics of Ptb are still sparse, probably due to the lack of tools that allow following the Ptb destiny both in living cells and in vivo. In this contest, we propose two Ptb fluorescent derivatives where Ptb has been functionalised by benzofurazan and rhodamine-B-isothiocyanate, compounds 1 and 2, respectively. Here, we report the synthesis, the optical and structural characterisation of 1 and 2, and, their putative cytotoxicity in two different cell lines.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Iole Venditti
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Simone Socci
- Department of Earth Science, University of Pisa, Pisa, Italy
| | | | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Pisa, Italy.,Research Centre E. Piaggio, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Torres J, Campos KS, Harrison CR. Fluorescently Labeling Amino Acids in a Deep Eutectic Solvent. Anal Chem 2022; 94:16538-16542. [DOI: 10.1021/acs.analchem.2c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jessica Torres
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Karen S. Campos
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Christopher R. Harrison
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| |
Collapse
|
7
|
McCoy MA, Spicer D, Wells N, Hoogewijs K, Fiedler M, Baud MGJ. Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale. J Med Chem 2022; 65:7246-7261. [PMID: 35581674 PMCID: PMC9150122 DOI: 10.1021/acs.jmedchem.2c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The canonical Wingless-related
integration site signaling pathway
plays a critical role in human physiology, and its dysregulation can
lead to an array of diseases. β-Catenin is a multifunctional
protein within this pathway and an attractive yet challenging therapeutic
target, most notably in oncology. This has stimulated the search for
potent small-molecule inhibitors binding directly to the β-catenin
surface to inhibit its protein–protein interactions and downstream
signaling. Here, we provide an account of the claimed (and some putative)
small-molecule ligands of β-catenin from the literature. Through
in silico analysis, we show that most of these molecules contain promiscuous
chemical substructures notorious for interfering with screening assays.
Finally, and in line with this analysis, we demonstrate using orthogonal
biophysical techniques that none of the examined small molecules bind
at the surface of β-catenin. While shedding doubts on their
reported mode of action, this study also reaffirms β-catenin
as a prominent target in drug discovery.
Collapse
Affiliation(s)
- Michael A McCoy
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Dominique Spicer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Neil Wells
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Kurt Hoogewijs
- National University of Ireland, University Road, Galway H91 TK33, Ireland
| | - Marc Fiedler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Matthias G J Baud
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
8
|
Pavão ML, Ferin R, Lima A, Baptista J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv Clin Chem 2022; 109:75-127. [DOI: 10.1016/bs.acc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Mehta PK, Ryu K, Kim CK, Lee KH. Improvement of the photostability of cycloalkylamine-7-sulfonyl-2,1,3-benzoxadiazole-based fluorescent dyes by replacing the dimethylamino substituent with cyclic amino rings. NEW J CHEM 2022. [DOI: 10.1039/d1nj05499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing the dimethylamino substituent of a fluorescent probe with 3- and 4-membered cyclic amine rings led to significantly enhanced photostability.
Collapse
Affiliation(s)
- Pramod Kumar Mehta
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Ki Ryu
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Chan Kyung Kim
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Keun-Hyeung Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| |
Collapse
|
10
|
Qin X, Yang X, Du L, Li M. Polarity-based fluorescence probes: properties and applications. RSC Med Chem 2021; 12:1826-1838. [PMID: 34825183 PMCID: PMC8597426 DOI: 10.1039/d1md00170a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022] Open
Abstract
Local polarity can affect the physical or chemical behaviors of surrounding molecules, especially in organisms. Cell polarity is the ultimate feedback of cellular status and regulation mechanisms. Hence, the abnormal alteration of polarity in organisms is closely linked with functional disorders and many diseases. It is incredibly significant to monitor and detect local polarity to explain the biological processes and diagnoses of some diseases. Because of their in vivo safe and real-time monitoring, several polarity-sensitive fluorophores and fluorescent probes have gradually emerged and been used in modern research. This review summarizes the fluorescence properties and applications of several representative polarity-sensitive fluorescent probes.
Collapse
Affiliation(s)
- Xiaojun Qin
- School of Pharmacy, Guangxi Medical University Nanning Guangxi 530021 China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- State Key Laboratory of Microbial Technology, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
11
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
12
|
Poronik YM, Baryshnikov GV, Deperasińska I, Espinoza EM, Clark JA, Ågren H, Gryko DT, Vullev VI. Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles. Commun Chem 2020; 3:190. [PMID: 36703353 PMCID: PMC9814504 DOI: 10.1038/s42004-020-00434-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023] Open
Abstract
Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor-donor-acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of the bis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.
Collapse
Affiliation(s)
- Yevgen M. Poronik
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Glib V. Baryshnikov
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Irena Deperasińska
- grid.413454.30000 0001 1958 0162Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Eli M. Espinoza
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.47840.3f0000 0001 2181 7878Present Address: College of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - John A. Clark
- grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA
| | - Hans Ågren
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden ,grid.77602.340000 0001 1088 3909Department of Physics, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050 Russian Federation
| | - Daniel T. Gryko
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Valentine I. Vullev
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Biochemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Materials Science and Engineering Program, University of California, Riverside, CA USA
| |
Collapse
|
13
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
14
|
Komatsu S, Ohno KI, Fujimura T. Binding Assays Using a Benzofurazan-Labeled Fluorescent Probe for Estrogen Receptor-Ligand Interactions. Chem Pharm Bull (Tokyo) 2020; 68:954-961. [PMID: 32999147 DOI: 10.1248/cpb.c20-00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding assays are widely used to study the estrogenic activity of compounds targeting the estrogen receptor (ER). The fluorescence properties of benzofurazan (BD), an environmentally sensitive fluorophore, are affected by solvent polarity. In this study, we synthesized BD-labeled estradiol (E2) derivatives hoping to develop a fluorescent ligand to be used in ER binding assays, without the separation of free- from bound-ligand. Three fluorescent ligands with a BD skeleton were obtained and their fluorescence properties were investigated. Analysis of the fluorescent ligands and human recombinant ERα (hr-ERα) interactions revealed that the fluorescence intensity increased in hydrophobic environments, such as the receptor-binding site. In saturation binding assays, ABD-E2 derivative 2c showed positive cooperative binding, and its dissociation constant (Kd) and Hill coefficient were 23.4 nM and 1.34, respectively. The estrogenic compounds affinity, assessed by competitive binding assays was well correlated with the results obtained by conventional studies, using the fluorescence polarization method. Overall, the developed assay using BD-labeled ligands was a simple, rapid, and reliable method for the evaluation of ER binding affinity.
Collapse
Affiliation(s)
- Sachiko Komatsu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Ken-Ichi Ohno
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
15
|
Higashijima T, Kishikawa N, Kuroda N. Long-wavelength Fluorogenic Derivatization of Aryl Halides Based on the Formation of Stilbene by Heck Reaction with Vinylbenzenes. ANAL SCI 2020; 36:997-1001. [PMID: 32173676 DOI: 10.2116/analsci.20p031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 08/09/2023]
Abstract
The long-wavelength fluorogenic derivatization method for aryl halides was developed based on stilbene formation by the Heck coupling reaction between aryl halides and vinylbenzenes in the presence of palladium(II) acetate as a catalyst. Fluorescent maximum wavelengths of the derivative obtained by the proposed reaction were 365 - 450 nm, which were 50 - 100 nm longer than those of the biphenyl derivatives formed with our previously developed fluorogenic derivatization method. Also, by the investigation using vinylbenzenes containing electron-donating or -withdrawing functional groups, it was found that an internal charge transfer system could contribute to extend the emission wavelength of the derivative. Furthermore, the proposed reaction was applied to develop a pre-column derivatization HPLC with fluorescence detection method for aryl bromides using 4-vinylanisole. p-Substituted aryl bromide derivatives (i.e., p-bromobenzonitrile, p-bromoanisole, bromobenzene, p-bromobenzoic acid ethyl ester, p-bromotoluene) were successfully detected within 40 min with the detection limit of 0.007 - 0.264 μM. Despite the short reaction time of 10 min, the reaction yields for p-bromoanisole and bromobenzene were good at 101 and 87%, respectively.
Collapse
Affiliation(s)
- Takumi Higashijima
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
16
|
Yokoo H, Kagechika H, Ohsaki A, Hirano T. A Polarity‐Sensitive Fluorescent Amino Acid and its Incorporation into Peptides for the Ratiometric Detection of Biomolecular Interactions. Chempluschem 2019; 84:1716-1719. [DOI: 10.1002/cplu.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hidetomo Yokoo
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Ayumi Ohsaki
- College of Humanities and SciencesNihon University 3-25-40 Sakurajosui, Setagaya-ku Tokyo 156-8550 Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
17
|
Wang DY, Wen X, Xiong CD, Zhao JN, Ding CY, Meng Q, Zhou H, Wang C, Uchiyama M, Lu XJ, Zhang A. Non-transition Metal-Mediated Diverse Aryl-Heteroatom Bond Formation of Arylammonium Salts. iScience 2019; 15:307-315. [PMID: 31102996 PMCID: PMC6525302 DOI: 10.1016/j.isci.2019.04.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Aryl–heteroatom (C–X) bonds ubiquitously exist in organic, medicinal, and material chemistry, but a universal method to construct diverse C–X bonds is lacking. Here we report our discovery of a convenient and efficient approach to construct various C–X bonds using arylammonium salts as the substrate via an SNAr process. This strategy features mild reaction condition, no request of transition metal catalyst, and easy formation of various C–X bonds (C–S, C–Si, C–Sn, C–Ge, C–Se, C–N). The method was successfully applied to a late-stage functionalization of an existing antibiotic drug, to a Clickable reaction of NBD-based ammonium salt as turn-on fluorescent probe to recognize L-cysteine and homocysteine, and to the synthesis of a DNA encoded library (DEL) bearing different C–X bonds. An efficient approach to construct various C–heteroatom bonds Readily accessible ammonium salts as substrates No request of transition metal catalyst and broad functional group compatibility Great applicability in late-stage functionalization, fluorescent probe, and DEL
Collapse
Affiliation(s)
- Dong-Yu Wang
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Wen
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Dong Xiong
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Nan Zhao
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun-Yong Ding
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Meng
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo-to 113-0033, Japan; Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo-to 113-0033, Japan; Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Xiao-Jie Lu
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
18
|
Novel fluorescent triazinobenzimidazole derivatives as probes for labelling human A 1 and A 2B adenosine receptor subtypes. Bioorg Med Chem 2018; 26:5885-5895. [PMID: 30415894 DOI: 10.1016/j.bmc.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs. Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.
Collapse
|
19
|
Yasaka N, Kishikawa N, Higashijima T, Ohyama K, Kuroda N. The Utility of Sonogashira Coupling Reaction for the Derivatization of Aryl Halides with Fluorescent Alkyne. ANAL SCI 2018; 34:1183-1188. [PMID: 30305595 DOI: 10.2116/analsci.18p117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aryl halides are a very important category of compounds that include many vital drugs and key industrial additives, such as clofibrate and bromobenzene, respectively. Due to their importance, our research group previously developed a novel fluorescence labeling approach for their analysis using a fluorescent aryl boronic acid as a reagent, based on the Suzuki coupling reaction. This coupling reaction was successfully applied for the determination of aryl halides in biological fluids; however, there was a limitation of low reactivity towards ortho-substituted aryl halides. In the present study, a novel fluorescence derivatization approach for aryl halides was developed using, 2-(4-ethynylphenyl)-4,5-diphenyl-1H-imidazole (DIB-ET) as a fluorescent alkyne reagent, based on the Sonogashira coupling reaction. DIB-ET reacted with aryl bromides in the presence of palladium and copper as catalysts, yielding fluorescent derivatives that could be subsequently determined by an HPLC system with fluorescence detection. The detection limits (S/N = 3) for aryl bromides were in the range of 14 - 23 nM, which is 3.5 - 18-times more sensitive than our previously developed approach, Suzuki coupling derivatization. Moreover, in contrast to the previous technique, the reactivity of DIB-ET to ortho-substituted aryl bromides was almost equivalent to that of the para-substituted aryl bromides. Hence, by using this newly developed approach we could label the aryl halides with more sensitivity and reactivity. Finally, the proposed method was successfully applied for the selective determination of aryl bromides in human serum with good recovery (84.6 - 107%), which proves the ability of the developed method to determine occupational exposure to aryl halides.
Collapse
Affiliation(s)
- Naoyuki Yasaka
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Takumi Higashijima
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Kaname Ohyama
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| |
Collapse
|
20
|
El-Maghrabey M, Mine M, Kishikawa N, Ohyama K, Kuroda N. A novel dual labeling approach enables converting fluorescence labeling reagents into fluorogenic ones via introduction of purification tags. Application to determination of glyoxylic acid in serum. Talanta 2018; 180:323-328. [DOI: 10.1016/j.talanta.2017.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
21
|
Yokoo H, Ohsaki A, Kagechika H, Hirano T. Unique Properties of 1,5-Naphthyridin-2(1H
)-one Derivatives as Environment-Polarity-Sensitive Fluorescent Dyes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hidetomo Yokoo
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai 101-0062 Chiyoda-ku, Tokyo Japan
| | - Ayumi Ohsaki
- College of Humanities and Sciences; Nihon University; 3-25-40 Sakurajosui 156-8550 Setagaya-ku, Tokyo Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai 101-0062 Chiyoda-ku, Tokyo Japan
| | - Tomoya Hirano
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai 101-0062 Chiyoda-ku, Tokyo Japan
| |
Collapse
|
22
|
A Validated Fluorometric Method for the Rapid Determination of Pregabalin in Human Plasma Applied to Patients With Pain. Ther Drug Monit 2017; 38:628-33. [PMID: 27465975 DOI: 10.1097/ftd.0000000000000325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pregabalin has been used for the treatment of pain. A clinically accepted method applied to patients with pain has not been published for the determination of pregabalin in human plasma. This study developed a fluorometric ultrahigh-performance liquid chromatography (UHPLC) method to measure pregabalin concentration in patients with pain. METHODS After plasma pretreatment involving protein precipitation, pregabalin and gabapentin as an internal standard were derivatized with 4-fluoro-7-nitrobenzofurazan (NBD-F) under the following reaction conditions: 1 minute, pH 10, and 60°C. The UHPLC separation was performed using a 2.3-μm particle size octadecylsilyl column. The fluorescence detector was set at excitation and emission wavelengths of 470 and 530 nm, respectively. The predose blood samples were collected from 40 patients with pain who have been treated with 75 mg of pregabalin twice daily. RESULTS The chromatographic run time was 1.25 minutes. No interfering peaks were observed in the blank plasma at the retention times of NBD derivatives. The calibration curve of pregabalin was linear at a range of 0.05-10 mcg/mL (r > 0.999). The lower limit of quantification was 0.05 mcg/mL. The intra-assay accuracy and precision were 98.3%-99.8% and within 4.3%, respectively. The inter-assay accuracy and precision were 103.2%-107.1% and within 4.1%, respectively. The predose plasma concentration of pregabalin in patients with pain ranged from 0.14 to 8.5 mcg/mL. CONCLUSIONS This study provides a validated fluorometric UHPLC method with fast analytical performance for the determination of pregabalin in human plasma. The present method could be applied to patients with pain and be used for the clinical research or therapeutic drug monitoring of pregabalin.
Collapse
|
23
|
Gbayo K, Isanbor C, Lobb K, Oloba-Whenu O. Mechanism of nucleophilic substitution reactions of 4-(4ˊ-nitro)phenylnitrobenzofurazan ether with aniline in acetonitrile. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rate constants and activation parameters obtained for the nucleophilic aromatic substitution reactions (SNAr) of 4-substitutedphenoxy-7-nitrobenzoxadiazole (1) with aniline in acetonitrile at varying temperature using Nuclear Magnetic Resonance (NMR) techniques were reported. These results were compared with the theoretical study which identifies transformations and intermediates using Density Functional Theory (DFT).
Collapse
|
24
|
Korshunova GA, Shishkina AV, Skulachev MV. Design, Synthesis, and Some Aspects of the Biological Activity of Mitochondria-Targeted Antioxidants. BIOCHEMISTRY (MOSCOW) 2017; 82:760-777. [PMID: 28918741 DOI: 10.1134/s0006297917070021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes for the first time data on the design and synthesis of biologically active compounds of a new generation - mitochondria-targeted antioxidants, which are natural (or synthetic) p-benzoquinones conjugated via a lipophilic linker with (triphenyl)phosphonium or ammonium cations with delocalized charge. It also describes the synthesis of mitochondria-targeted antioxidants - uncouplers of oxidative phosphorylation - based on fluorescent dyes.
Collapse
Affiliation(s)
- G A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
25
|
Milite C, Barresi E, Da Pozzo E, Costa B, Viviano M, Porta A, Messere A, Sbardella G, Da Settimo F, Novellino E, Cosconati S, Castellano S, Taliani S, Martini C. Exploiting the 4-Phenylquinazoline Scaffold for the Development of High Affinity Fluorescent Probes for the Translocator Protein (TSPO). J Med Chem 2017; 60:7897-7909. [DOI: 10.1021/acs.jmedchem.7b01031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ciro Milite
- Dipartimento
di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Elisabetta Barresi
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Barbara Costa
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Dipartimento
di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Amalia Porta
- Dipartimento
di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Messere
- DiSTABiF, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gianluca Sbardella
- Dipartimento
di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Federico Da Settimo
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sabrina Castellano
- Dipartimento
di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Dipartimento
di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università di Salerno, Via Salvador Allende, I-84081 Baronissi, Salerno, Italy
| | - Sabrina Taliani
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
26
|
Ikeda H. Fluorescent cyclodextrins as chemosensors for the detection of cyclic and acyclic alcohols. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Muz M, Ost N, Kühne R, Schüürmann G, Brack W, Krauss M. Nontargeted detection and identification of (aromatic) amines in environmental samples based on diagnostic derivatization and LC-high resolution mass spectrometry. CHEMOSPHERE 2017; 166:300-310. [PMID: 27705823 DOI: 10.1016/j.chemosphere.2016.09.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The presence of aromatic amines in the environment has been in the focus of research, as many of these compounds are known or suspected mutagens and carcinogens. To facilitate the detection of aromatic amines in complex environmental samples by LC-high resolution mass spectrometry, an on-line-post-column and a pre-column derivatization method to label (in an ideal case) all aromatic amines was evaluated by applying different derivatization reagents. 4-Fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) was found to be the most promising labeling reagent due to its high reactivity with both primary and secondary amines and its low signal in positive mode electrospray ionization (ESI+). Post-column on-line derivatization did not result in sufficient signal intensities of derivatives. With pre-column derivatization most of the selected aromatic amines resulted in a derivative that shows common fragments of diagnostic value. The selectivity of NBD-F was studied in depth with a data set of 220 compounds with different functional groups showing that also aliphatic amines and some thiols yield a derivative. The developed method was successfully applied to wastewater effluent samples and several derivatives were confirmed by diagnostic neutral losses.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany.
| | - Norbert Ost
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Ralph Kühne
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Gerrit Schüürmann
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596, Freiberg, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
28
|
Highly Sensitive Analysis of Proteins and Metabolites by Metal Tagging Using LC-ICP-MS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Schmidt SK, Höfner G, Wanner KT. Determination of enantiomeric excess of nipecotic acid as 1-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl) derivatives. Chirality 2016; 29:48-56. [DOI: 10.1002/chir.22670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Simone K. Schmidt
- Department of Pharmacy - Center of Drug Research; Ludwig-Maximilians-Universität München; Munich Germany
| | - Georg Höfner
- Department of Pharmacy - Center of Drug Research; Ludwig-Maximilians-Universität München; Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy - Center of Drug Research; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
30
|
Wang W, Zhu L, Hirano Y, Kariminavargani M, Tada S, Zhang G, Uzawa T, Zhang D, Hirose T, Taiji M, Ito Y. Fluorogenic Enhancement of an in Vitro-Selected Peptide Ligand by Replacement of a Fluorescent Group. Anal Chem 2016; 88:7991-7. [DOI: 10.1021/acs.analchem.6b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Wang
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Liping Zhu
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshinori Hirano
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Marziyeh Kariminavargani
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichi Tada
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Guanxin Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takanori Uzawa
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Deqing Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takuji Hirose
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Christiansen E, Hudson BD, Hansen AH, Milligan G, Ulven T. Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer. J Med Chem 2016; 59:4849-58. [DOI: 10.1021/acs.jmedchem.6b00202] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elisabeth Christiansen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D. Hudson
- Molecular
Pharmacology Group, Institute of Molecular, Cell and Systems Biology,
College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Anders Højgaard Hansen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Graeme Milligan
- Molecular
Pharmacology Group, Institute of Molecular, Cell and Systems Biology,
College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Trond Ulven
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
32
|
Mertens MD, Bierwisch A, Li T, Gütschow M, Thiermann H, Wille T, Elsinghorst PW. A novel fluorogenic probe for the investigation of free thiols: Application to kinetic measurements of acetylcholinesterase activity. Toxicol Lett 2016; 244:161-166. [PMID: 26494253 DOI: 10.1016/j.toxlet.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
A novel coumarin-derived thiol probe, based on the thiol-promoted cleavage of a quenching 2,4-dinitrobenzenesulfonyl group is described. The probe shows a sensitive fluorescence turn-on and sufficient solubility in aqueous environments. As a proof of concept, a new assay for AChE activity was developed as a useful addition to the established Ellman method. The observed reaction kinetics followed an asymmetric sigmoidal pattern and were successfully evaluated applying a three parameter Gompertz equation. Providing a linear relationship between the detected fluorescence formation curves and corresponding enzyme activities, this probe appears as a valuable tool for AChE activity measurements.
Collapse
Affiliation(s)
- Matthias D Mertens
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Anne Bierwisch
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Tianwei Li
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Paul W Elsinghorst
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany.
| |
Collapse
|
33
|
Yoshida H, Kondo K, Yamamoto H, Kageyama N, Ozawa SI, Shimbo K, Muramatsu T, Imaizumi A, Mizukoshi T, Masuda J, Nakayama D, Hayakawa Y, Watanabe K, Mukaibatake K, Miyano H. Validation of an analytical method for human plasma free amino acids by high-performance liquid chromatography ionization mass spectrometry using automated precolumn derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 998-999:88-96. [DOI: 10.1016/j.jchromb.2015.05.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022]
|
34
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
35
|
Vasilyeva SV, Kuznetsova AS, Khalyavina JG, Glazunova VA, Shtil AA, Gornostaev LM, Silnikov VN. Novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole and naphtho-[1,2,3-CD] Indole-6 (2H)-one fragments. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:615-25. [PMID: 25105452 DOI: 10.1080/15257770.2014.913064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A series of novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole or naphtho[1,2,3-cd]indole-6 (2h)-one fragments was designed and synthesized. Introduction of fluorescent fragments into the position 5 of the uridine or cytidine heterocycle was carried out in two ways: by Sonogashira Coupling Reaction and CuI-catalyzed cycloaddition ("click" reaction). The obtained nucleoside derivatives became fluorescent due to the inserted fragments. The excitation wavelength (440-450 nm) was outside the absorption band of many biomolecules and significantly differed from the emission wavelength (560-600 nm). In addition, the intended nucleoside analogs were shown to kill cultured human tumor cells at submicromolar concentrations.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | | | | | | | | | | | | |
Collapse
|
36
|
Gas analyzer for continuous monitoring of trace level methanethiol by microchannel collection and fluorescence detection. Anal Chim Acta 2014; 841:1-9. [PMID: 25109855 DOI: 10.1016/j.aca.2014.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022]
|
37
|
Approaches for the introduction of fluorinated substituents into [1,2,3]Triazolo[1,5-a]pyridines. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Recent advances in development and application of derivatization reagents having a benzofurazan structure: a brief overview. Biomed Chromatogr 2014; 28:760-6. [DOI: 10.1002/bmc.3115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Meng X, Suo X, Ding W, Li X, Ding Y. Determination of 8-hydroxy-2′- deoxyguanosine derivatized with 4-chloro-7- nitrobenzofurazan in urine by CE-LIF. Electrophoresis 2014; 35:1873-9. [DOI: 10.1002/elps.201300650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Xiangying Meng
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xingmei Suo
- School of Information Engineering; Minzu University of China; Beijing P. R. China
| | - Wenjun Ding
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiangjun Li
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Yongsheng Ding
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
40
|
Chromatographic determination of low-molecular mass unsaturated aliphatic aldehydes with peroxyoxalate chemiluminescence detection after fluorescence labeling with 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:147-52. [PMID: 24614624 DOI: 10.1016/j.jchromb.2014.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
A highly sensitive, selective and reproducible chromatographic method is described for determination of low-molecular mass unsaturated aliphatic aldehydes in human serum. The method combines fluorescent labeling using 4-(N,N-Dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole with peroxyoxalate chemiluminescence. The derivatives were separated on a reversed-phase column C8 isocratically using a mixture of acetonitrile and 90mM imidazole-HNO3 buffer (pH 6.4, 1:1, % v/v). The calibration ranges were: 20-420nM for methylglyoxal, 16-320nM for acrolein, 15-360nM for crotonaldehyde and 20-320nM for trans-2-hexenal. The detection limits were ranged from 4.4 to 6.5nM (88-130fmol/injection), the recovery results were within the range of 87.4-103.8% and the intra and inter-day precision results were lower than 5.5%. The proposed validated method has been successfully applied to healthy, diabetic and rheumatic arthritis patients' sera with simple pretreatment method. In conclusion, this new method is suitable for routine analysis of large numbers of clinical samples for assessment of the oxidative stress state in patients.
Collapse
|
41
|
ISOKAWA M, FUNATSU T, TSUNODA M. Efficient Separation and Sensitive Detection of Biothiols by Hydrophilic Interaction Liquid Chromatography with Fluorescence Detection after Derivatization with 4-Aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole. CHROMATOGRAPHY 2014. [DOI: 10.15583/jpchrom.2014.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Muneki ISOKAWA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Takashi FUNATSU
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Makoto TSUNODA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
42
|
Yamaguchi T, Asanuma M, Nakanishi S, Saito Y, Okazaki M, Dodo K, Sodeoka M. Turn-ON fluorescent affinity labeling using a small bifunctional O-nitrobenzoxadiazole unit. Chem Sci 2014. [DOI: 10.1039/c3sc52704b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Elbashir AA, Krieger S, Schmitz OJ. Simultaneous determination of polyamines and acetylpolyamines in human urine by capillary electrophoresis with fluorescence detection. Electrophoresis 2013; 35:570-6. [PMID: 24338443 DOI: 10.1002/elps.201300337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 11/06/2022]
Abstract
There has been evidence linking elevated polyamines (PAs) and acetylpolamines (AcPAs) level and cancer. So the simultaneous analysis of these compounds has become important task for cancer diagnosis and antitumor drug monitoring. A simple, fast and inexpensive CZE-LIF method has been developed for the determination of cadaverine (CAD), putrescine (PUT), spermine (SPM), spermidine (SPD), acetylspermine (ASPM), and acetylspermidine (ASPD) in human urine using 4-chloro-7-nitro-2,1,3-benzooxadiazole as a fluorescent reagent. Labeling reaction conditions were systematically investigated and were found to be 20 mM borate buffer at pH 7.4, labeling reaction time, and temperature were 10 min and 70°C, respectively. Under these optimized conditions the four PAs, two AcPAs and the internal standard were separated in 6 min. An Exactive-MS with an ESI source was used for identification of the bis-derivative of the ASPM. The method was validated in term of linearity, LODs, repeatability, intra- and interday assays, recovery, and selectivity. The LODs for CAD, PUT, SPM, SPD, ASPM, and ASPD were found to be 7.6, 10.0, 9.0, 8.8,7.8, and 3.3 nM, respectively. The method was successfully applied for the analysis of PAs and AcPAs in healthy human urine samples.
Collapse
Affiliation(s)
- Abdalla A Elbashir
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; University of Khartoum, Faculty of Science, Chemistry Department, Khartoum, Khartoum, Sudan
| | | | | |
Collapse
|
44
|
Gao Y, Kuang Y, Du X, Zhou J, Chandran P, Horkay F, Xu B. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15191-200. [PMID: 24266765 PMCID: PMC3895920 DOI: 10.1021/la403457c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in a cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit a different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in a cellular environment. Moreover, cell viability tests suggest that the states and the locations of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work demonstrates self-assembly as a key factor for dictating the spatial distribution of small molecules in a cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in a cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Section on Tissue Biophysics and Biomimetics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA
| | - Yi Kuang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Preethi Chandran
- Chemical Engineering Department, Howard University, Washington, DC 20059, USA
| | - Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Corresponding Author
| |
Collapse
|
45
|
Isokawa M, Funatsu T, Tsunoda M. Fast and simultaneous analysis of biothiols by high-performance liquid chromatography with fluorescence detection under hydrophilic interaction chromatography conditions. Analyst 2013; 138:3802-8. [PMID: 23702918 DOI: 10.1039/c3an00527e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A method for analyzing biothiols based on high-performance liquid chromatography (HPLC)-fluorescence detection under hydrophilic interaction chromatography (HILIC) conditions has been developed. Thiols were derivatized with nonfluorescent ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F), which selectively reacts with the thiol groups to furnish the corresponding fluorescent SBD-thiols. Among the six different kinds of HILIC columns examined, the ZIC-HILIC column with sulfobetaine groups in the stationary phase proved to be the best for the separation of SBD-thiols. Eight thiols-N-acetylcysteine, cysteamine, homocysteine, cysteine, cysteinylglycine, glutathione, γ-glutamylcysteine, and internal standard N-(2-mercaptopropionyl)glycine-were baseline-separated within 10 min. The detection sensitivity was improved partly due to the increase in the SBD-thiol fluorescence owing to the acetonitrile-rich mobile phase used. The detection limits at a signal-to-noise ratio of 3 were 0.02-3.4 nmol l(-1). The method could successfully quantify six thiols in a human plasma sample, while cysteamine could not be detected. Both the intra- and interday precisions were below 4% for homocysteine, cysteine, cysteinylglycine, glutathione, and γ-glutamylcysteine except for N-acetylcysteine. This method should be a useful tool for investigating the relationship between sulfur metabolism and related diseases, since a multicomponent system consisting of different thiol compounds could be analyzed simultaneously with high sensitivity within a short time.
Collapse
Affiliation(s)
- Muneki Isokawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
46
|
Haldar S, Kumar S, Kolet SP, Patil HS, Kumar D, Kundu GC, Thulasiram HV. One-Pot Fluorescent Labeling Protocol for Complex Hydroxylated Bioactive Natural Products. J Org Chem 2013; 78:10192-202. [DOI: 10.1021/jo401559t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Haldar
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Santosh Kumar
- National
Center for Cell Science, Pune-411007, India
| | - Swati P. Kolet
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Harshal S. Patil
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Dhiraj Kumar
- National
Center for Cell Science, Pune-411007, India
| | | | - Hirekodathakallu V. Thulasiram
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune-411008, India
- CSIR-Institute
of Genomics and Integrative Biology, Mall Road, New Delhi-110007, India
| |
Collapse
|
47
|
Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries. Anal Chim Acta 2013; 798:1-24. [DOI: 10.1016/j.aca.2013.07.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
|
48
|
Guo YR, Li XR, Zhang MJ, Pan QJ, Sun ZM. Theoretical studies on the structural and spectroscopic properties of an iminocoumarin-based probe and its metal complexation: an implication for a fluorescence probe. Dalton Trans 2013; 42:13004-13. [PMID: 23872743 DOI: 10.1039/c3dt51367j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To understand the sensing behaviors of molecular fluorescent probes, an N,N-di(picolyl)aminoethyl-iminocoumarin probe (L) and its complexation with metal(II) ions (ML, M = Mg, Ca, Zn, Cd and Hg) were examined by relativistic density functional theory (DFT). Four stable conformational isomers (labeled as g1, g2, a1 and a2) for each of them have been optimized, except for CaL having only three without the g2 isomer. All of these structures have been confirmed by frequency calculations. In the aqueous solution, the a2 isomer of the L probe was calculated to be the most stable, while the g1 isomer turns out to be energetically favorable upon binding with metal ions. At these isomeric geometries, the experimentally obtained absorption was well reproduced by calculations of time-dependent DFT (TD-DFT) and a conductor-like polarized continuum model (CPCM). A slight red-shifting from L (508 nm) to ML (516-528 nm) was found. This is due to the metal affinity that stabilizes the LUMOs of ML greater than the HOMOs. Singlet excited-state structures of L and ML (M = Zn, Cd and Hg) were fully optimized using the TD-DFT approach, giving more relaxed geometries than their respective ground-state ones. Their fluorescent emissions in the aqueous solution were calculated to be 543 and 551-560 nm, respectively, agreeing with experimental values of 543 nm for L and 558 nm for ZnL. The present study also presents theoretical support for a sensing mechanism of photo-induced charge transfer of the L probe that was proposed in the previous experiment.
Collapse
Affiliation(s)
- Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science and Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
49
|
Ahmed S, Abdel-Wadood HM, Mohamed NA. Highly sensitive and selective high-performance liquid chromatography method for bioequivalence study of cefpodoxime proxetil in rabbit plasma via fluorescence labeling of its active metabolite. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 934:34-40. [PMID: 23896427 DOI: 10.1016/j.jchromb.2013.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 11/29/2022]
Abstract
Cefpodoxime proxetil (CFP), a broad-spectrum third-generation cephalosporin, has been used most widely in the treatment of respiratory and urinary tract infections. For bioequivalence study of CFP in rabbit plasma, it was necessary to develop a highly sensitive and selective high-performance liquid chromatographic (HPLC) method with fluorescence (FL) detection. The pre-column labeling of cefpodoxime acid (CFA) (active metabolite) with an efficient benzofurazan type fluorogenic reagent, 4-N,N-dimethyl aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole (DBD-F) was carried out in the present study in 100mM borate buffer (pH=8.5) at 50°C for 15min. The obtained fluorescent products were separated on C18 column with an isocratic elution of the mobile phase, which consists of 10mM phosphate buffer (pH=3.5)/CH3CN (70:30, v/v). The fluorescent product (DBD-CFA) was detected fluorimetrically at 556nm with an excitation wavelength of 430nm. Cefotaxime sodium was used as internal standard. The method was validated according to the requirements of US-FDA guidelines. The correlation coefficient of 0.999 was obtained in the concentration ranges of 10-1000ngmL(-1). The limits of detection and quantification (S/N=3) were 3 and 10ngmL(-1), respectively. Plasma CFA levels were successfully determined in rabbit with satisfactory precision and accuracy. The proposed HPLC-FL method was successfully applied to study bioequivalence in rabbits for two formulations of different brands contained CFP (prodrug) in a randomized, two-way, single-dose, crossover study and all pharmacokinetic parameters for the two formulations were assessed.
Collapse
Affiliation(s)
- Sameh Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia.
| | | | | |
Collapse
|
50
|
Montoya LA, Pearce TF, Hansen RJ, Zakharov LN, Pluth MD. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. J Org Chem 2013; 78:6550-7. [PMID: 23735055 PMCID: PMC3730526 DOI: 10.1021/jo4008095] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications.
Collapse
Affiliation(s)
- Leticia A. Montoya
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Taylor F. Pearce
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Ryan J. Hansen
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Lev N. Zakharov
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Michael D. Pluth
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| |
Collapse
|