1
|
Khan SA, Nidhi FNU, Amendum PC, Tomatsu S. Detection of Glycosaminoglycans in Biological Specimens. Methods Mol Biol 2023; 2619:3-24. [PMID: 36662458 PMCID: PMC10199356 DOI: 10.1007/978-1-0716-2946-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteoglycans (PGs) are macromolecules formed by a protein backbone to which one or more glycosaminoglycan (GAG) side chains are covalently attached. Most PGs are present in connective tissues, cell surfaces, and intracellular compartments. The major biological function of PGs derives from the GAG component of the molecule, which is involved in cell growth and proliferation, embryogenesis, maintenance of tissue hydration, and interactions of the cells via receptors. PGs are categorized into four groups based on their cellular and subcellular localization, including cell surfaces and extracellular, intracellular, and pericellular locations. GAGs are a crucial component of PGs involved in various physiological and pathological processes. GAGs also serve as biomarkers of metabolic diseases such as mucopolysaccharidoses and mucolipidoses. Detection of specific GAGs in various biological fluids helps manage various genetic metabolic disorders before it causes irreversible damage to the patient (Amendum et al., Diagnostics (Basel) 11(9):1563, 2021). There are several methods for detecting GAGs; this chapter focuses on measuring GAGs using enzyme-linked immunosorbent assay, liquid chromatographic tandem mass spectrometry, and automated high-throughput mass spectrometry.
Collapse
Affiliation(s)
- Shaukat A Khan
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - F N U Nidhi
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paige C Amendum
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Shunji Tomatsu
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA.
- Department of Pediatrics, Shimane University, Izumo, Japan.
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
3
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
4
|
Abstract
Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| |
Collapse
|
5
|
Arunkumar N, Vu DC, Khan S, Kobayashi H, Ngoc Can TB, Oguni T, Watanabe J, Tanaka M, Yamaguchi S, Taketani T, Ago Y, Ohnishi H, Saikia S, Álvarez JV, Tomatsu S. Diagnosis of Mucopolysaccharidoses and Mucolipidosis by Assaying Multiplex Enzymes and Glycosaminoglycans. Diagnostics (Basel) 2021; 11:1347. [PMID: 34441282 PMCID: PMC8394749 DOI: 10.3390/diagnostics11081347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidoses (MPS) and mucolipidosis (ML II/III) are a group of lysosomal storage disorders (LSDs) that occur due to a dysfunction of the lysosomal hydrolases responsible for the catabolism of glycosaminoglycans (GAGs). However, ML is caused by a deficiency of the enzyme uridine-diphosphate N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. A timely diagnosis of MPS and ML can lead to appropriate therapeutic options for patients. To improve the accuracy of diagnosis for MPS and ML in a high-risk population, we propose a combination method based on known biomarkers, enzyme activities, and specific GAGs. We measured five lysosomal enzymes (α-L-iduronidase (MPS I), iduronate-2-sulfatase (MPS II), α-N-acetylglucosaminidase (MPS IIIB), N-acetylglucosamine-6-sulfatase (MPS IVA), and N-acetylglucosamine-4-sulfatase (MPS VI)) and five GAGs (two kinds of heparan sulfate (HS), dermatan sulfate (DS), and two kinds of keratan sulfate (KS)) in dried blood samples (DBS) to diagnose suspected MPS patients by five-plex enzyme and simultaneous five GAGs assays. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) for both assays. These combined assays were tested for 43 patients with suspected MPS and 103 normal control subjects. We diagnosed two MPS I, thirteen MPS II, one MPS IIIB, three MPS IVA, two MPS VI, and six ML patients with this combined method, where enzymes, GAGs, and clinical manifestations were compatible. The remaining 16 patients were not diagnosed with MPS or ML. The five-plex enzyme assay successfully identified MPS patients from controls. Patients with MPS I, MPS II, and MPS IIIB had significantly elevated HS and DS levels in DBS. Compared to age-matched controls, patients with ML and MPS had significantly elevated mono-sulfated KS and di-sulfated KS levels. The results indicated that the combination method could distinguish these affected patients with MPS or ML from healthy controls. Overall, this study has shown that this combined method is effective and can be implemented in larger populations, including newborn screening.
Collapse
Affiliation(s)
- Nivethitha Arunkumar
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
| | - Dung Chi Vu
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Thi Bich Ngoc Can
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
| | - Tsubasa Oguni
- Clinical Laboratory Division, Shimane University Hospital, Izumo 693-8501, Japan;
| | - Jun Watanabe
- Shimadzu Corporation, Kyoto 604-8442, Japan; (J.W.); (M.T.)
| | - Misa Tanaka
- Shimadzu Corporation, Kyoto 604-8442, Japan; (J.W.); (M.T.)
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| | - Sampurna Saikia
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
| | - José V. Álvarez
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| |
Collapse
|
6
|
Khan SA, Mason RW, Kobayashi H, Yamaguchi S, Tomatsu S. Advances in glycosaminoglycan detection. Mol Genet Metab 2020; 130:101-109. [PMID: 32247585 PMCID: PMC7198342 DOI: 10.1016/j.ymgme.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glycosaminoglycans (GAGs) are negatively charged long linear (highly sulfated) polysaccharides consisting of repeating disaccharide units that are expressed on the surfaces of all nucleated cells. The expression of GAGs is required for embryogenesis, regulation of cell growth and proliferation, maintenance of tissue hydration, and interactions of the cells via receptors. Mucopolysaccharidoses (MPS) are caused by deficiency of specific lysosomal enzymes that result in the accumulation of GAGs in multiple tissues leading to organ dysfunction. Therefore, GAGs are important biomarkers for MPS. Without any treatment, patients with severe forms of MPS die within the first two decades of life. SCOPE OF REVIEW Accurate measurement of GAGs is important to understand the diagnosis and pathogenesis of MPS and to monitor therapeutic efficacy before, during, and after treatment of the disease. This review covers various qualitative and quantitative methods for measurement of GAGs, including dye specific, thin layer chromatography (TLC), capillary electrophoresis, high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography, ELISA, and automated high-throughput mass spectrometry. Major conclusion: There are several methods for GAG detection however, specific GAG detection in the various biological systems requires rapid, sensitive, specific, and cost-effective methods such as LC-MS/MS. GENERAL SIGNIFICANCE This review will describe different methods for GAG detection and analysis, including their advantages and limitation.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, Tomatsu S. Liver-Targeted AAV8 Gene Therapy Ameliorates Skeletal and Cardiovascular Pathology in a Mucopolysaccharidosis IVA Murine Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:50-61. [PMID: 32577432 PMCID: PMC7301175 DOI: 10.1016/j.omtm.2020.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is due to the deficiency of GALNS (N-acetylgalactosamine 6-sulfate sulfatase) and is characterized by systemic skeletal dysplasia. We have evaluated adeno-associated virus 8 (AAV8) vectors expressing different forms of human GALNS under a liver-specific promoter. The vectors were delivered intravenously into 4-week-old MPS IVA knockout (KO) and immune tolerant (MTOL) mice at a dose of 5 × 1013 genome copies (GC)/kg. These mice were monitored for 12 weeks post-injection. GALNS enzyme activity was elevated significantly in plasma of all treated mice at 2 weeks post-injection. The activity observed was 4- to 19-fold higher than that in wild-type mice and was maintained throughout the monitoring period. Treatment with AAV vectors resulted in a reduction of keratan sulfate (KS) levels in plasma to normal levels 2 weeks post-injection, which were maintained until necropsy. Both vectors reduced the storage in articular cartilage, ligaments, and meniscus surrounding articular cartilage and growth plate region as well as heart muscle and valves. Our results suggest that the continuous presence of high levels of circulating enzyme increases the penetration into bone and heart and reduces the KS level, thereby improving storage in these regions. The current data support a strategy for developing a novel treatment to address the bone and heart disease in MPS IVA using AAV gene therapy.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | - Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Olivier Danos
- REGENXBIO, Rockville, MD 20850, USA
- Corresponding author: Olivier Danos, PhD, REGENXBIO, 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA.
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
- Corresponding author: Shunji Tomatsu, MD, PhD, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19899-0269, USA.
| |
Collapse
|
8
|
Sawamoto K, Álvarez González JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, Tomatsu S. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int J Mol Sci 2020; 21:E1517. [PMID: 32102177 PMCID: PMC7073202 DOI: 10.3390/ijms21041517] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
| | | | - Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
| | - Francisco J. Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Maria L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics and Pediatrics Neonatology Service, Metabolic Unit, IDIS, CIBERER, MetabERN, University Clinic Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Yasuyuki Suzuki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics (Basel) 2019; 9:diagnostics9040226. [PMID: 31861164 PMCID: PMC6963688 DOI: 10.3390/diagnostics9040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Current therapies for the mucopolysaccharidoses (MPS) do not effectively address skeletal and neurological manifestations. Pentosan polysulfate (PPS) is an alternative treatment strategy that has been shown to improve bone architecture, mobility, and neuroinflammation in MPS animals. The aims of this study were to a) primarily establish the safety of weekly PPS injections in attenuated MPS II, b) assess the efficacy of treatment on MPS pathology, and c) define appropriate clinical endpoints and biomarkers for future clinical trials. Subcutaneous injections were administered to three male Japanese patients for 12 weeks. Enzyme replacement therapy was continued in two of the patients while they received PPS and halted for two months in one patient before starting PPS. During treatment, one patient experienced an elevation of alanine transaminase, and another patient experienced convulsions; however, these incidences were non-cumulative and unrelated to PPS administration, respectively. Overall, the drug was well-tolerated in all patients, and no serious drug-related adverse events were noted. Generally, PPS treatment led to an increase in several parameters of shoulder range of motion and decrease of the inflammatory cytokines, MIF and TNF-α, which are potential clinical endpoints and biomarkers, respectively. Changes in urine and serum glycosaminoglycans were inconclusive. Overall, this study demonstrates the safety of using PPS in adults with MPS II and suggests the efficacy of PPS on MPS pathology with the identification of potential clinical endpoints and biomarkers.
Collapse
|
10
|
Development of Substrate Degradation Enzyme Therapy for Mucopolysaccharidosis IVA Murine Model. Int J Mol Sci 2019; 20:ijms20174139. [PMID: 31450640 PMCID: PMC6747109 DOI: 10.3390/ijms20174139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is caused by a deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Conventional enzyme replacement therapy (ERT) is approved for MPS IVA. However, the fact that the infused enzyme cannot penetrate avascular lesions in cartilage leads to minimal impact on the bone lesion. Moreover, short half-life, high cost, instability, and narrow optimal pH range remain unmet challenges in ERT. Thermostable keratanase, endo-β-N-acetylglucosaminidase, has a unique character of a wide optimal pH range of pH 5.0-7.0. We hypothesized that this endoglycosidase degrades keratan sulfate (KS) polymer in circulating blood and, therefore, ameliorates the accumulation of KS in multiple tissues. We propose a novel approach, Substrate Degradation Enzyme Therapy (SDET), to treat bone lesion of MPS IVA. We assessed the effect of thermostable keratanase on blood KS level and bone pathology using Galns knock-out MPS IVA mice. After a single administration of 2 U/kg (= 0.2 mg/kg) of the enzyme at 8 weeks of age via intravenous injection, the level of serum KS was significantly decreased to normal range level, and this suppression was maintained for at least 4 weeks. We administered 2 U/kg of the enzyme to MPS IVA mice every fourth week for 12 weeks (total of 3 times) at newborns or 8 weeks of age. After a third injection, serum mono-sulfated KS levels were kept low for 4 weeks, similar to that in control mice, and at 12 weeks, bone pathology was markedly improved when SDET started at newborns, compared with untreated MPS IVA mice. Overall, thermostable keratanase reduces the level of KS in blood and provides a positive impact on cartilage lesions, demonstrating that SDET is a novel therapeutic approach to MPS IVA.
Collapse
|
11
|
Lin HY, Lo YT, Wang TJ, Huang SF, Tu RY, Chen TL, Lin SP, Chuang CK. Normalization of glycosaminoglycan-derived disaccharides detected by tandem mass spectrometry assay for the diagnosis of mucopolysaccharidosis. Sci Rep 2019; 9:10755. [PMID: 31341247 PMCID: PMC6656773 DOI: 10.1038/s41598-019-46829-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is caused by the deficiency of a specific hydrolytic enzyme that catalyzes the step-wise degradation of glycosaminoglycans (GAGs). In this study, we propose an empirical method to calculate levels of GAG-derived disaccharides based on the quantity (peak areas) of chondroitin sulfate (CS) with the aim of making a diagnosis of MPS more accurate and reducing the occurrence of false positive and false negative results. In this study, levels of urinary GAG-derived disaccharides were measured in 67 patients with different types of MPS and 165 controls without MPS using a tandem mass spectrometry assay. Two different methods of reporting GAG-derived disaccharides were assessed; normalization to urinary CS (in μg/mL), and normalization to μg/mg creatinine. CS-normalization yielded more consistent values than creatinine-normalization. In particular, levels of urinary dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS) significantly varied because of changes in urine creatinine levels, which were proportional to age but inversely proportional to DS, HS, and KS measurements. Using CS-normalization revealed the actual status of DS, HS, and KS without the influence of factors such as age, urine creatinine, and other physiological conditions. It could discriminate between the patients with MPS and controls without MPS, and also to evaluate changes in GAG levels pre- and post-enzyme replacement therapy.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yun-Ting Lo
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Sung-Fa Huang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ru-Yi Tu
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Lin Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan. .,Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan. .,Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan. .,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan. .,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan.
| |
Collapse
|
12
|
Lin HY, Lee CL, Lo YT, Wang TJ, Huang SF, Chen TL, Wang YS, Niu DM, Chuang CK, Lin SP. The relationships between urinary glycosaminoglycan levels and phenotypes of mucopolysaccharidoses. Mol Genet Genomic Med 2018; 6:982-992. [PMID: 30296009 PMCID: PMC6305646 DOI: 10.1002/mgg3.471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study was to use the liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method to quantitate levels of three urinary glycosaminoglycans (GAGs; dermatan sulfate [DS], heparan sulfate [HS], and keratan sulfate [KS]) to help make a correct diagnosis of mucopolysaccharidosis (MPS). Methods We analyzed the relationships between phenotypes and levels of urinary GAGs of 79 patients with different types of MPS. Results The patients with mental retardation (n = 21) had significantly higher levels of HS than those without mental retardation (n = 58; 328.8 vs. 3.2 μg/ml, p < 0.001). The DS levels in the patients with hernia, hepatosplenomegaly, claw hands, coarse face, valvular heart disease, and joint stiffness were higher than those without. Twenty patients received enzyme replacement therapy (ERT) for 1–12.3 years. After ERT, the KS level decreased by 90% in the patients with MPS IVA compared to a 31% decrease in the change of dimethylmethylene blue (DMB) ratio. The DS level decreased by 79% after ERT in the patients with MPS VI compared to a 66% decrease in the change of DMB ratio. Conclusions The measurement of GAG fractionation biomarkers using the LC‐MS/MS method is a more sensitive and reliable tool than the DMB ratio for MPS high‐risk screening, diagnosis, subclass identification, and monitoring the efficacy of ERT.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chung-Lin Lee
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Sung-Fa Huang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Lin Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
13
|
Khan SA, Mason RW, Giugliani R, Orii K, Fukao T, Suzuki Y, Yamaguchi S, Kobayashi H, Orii T, Tomatsu S. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab 2018; 125:44-52. [PMID: 29779903 PMCID: PMC6175648 DOI: 10.1016/j.ymgme.2018.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
To explore the correlation between glycosaminoglycan (GAG) levels and mucopolysaccharidosis (MPS) type, we have evaluated the GAG levels in blood of MPS II, III, IVA, and IVB and urine of MPS IVA, IVB, and VI by tandem mass spectrometry. Dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS; mono-sulfated KS, di-sulfated KS), and the ratio of di-sulfated KS in total KS were measured. Patients with untreated MPS II had higher levels of DS and HS in blood while untreated MPS III had higher levels of HS in blood than age-matched controls. Untreated MPS IVA had higher levels of KS in blood and urine than age-matched controls. The ratio of blood di-sulfated KS/total KS in untreated MPS IVA was constant and higher than that in controls for children up to 10 years of age. The ratio of urine di-sulfated KS/total KS in untreated MPS IVA was also higher than that in age-matched controls, but the ratio in untreated MPS IVB was lower than controls. ERT reduced blood DS and HS in MPS II, and urine KS in MPS IVA patients, although GAGs levels remained higher than the observed in age-matched controls. ERT did not change blood KS levels in MPS IVA. MPS VI under ERT still had an elevation of urine DS level compared to age-matched controls. There was a positive correlation between blood and urine KS in untreated MPS IVA patients but not in MPS IVA patients treated with ERT. Blood and urine KS levels were secondarily elevated in MPS II and VI, respectively. Overall, measurement of GAG levels in blood and urine is useful for diagnosis of MPS, while urine KS is not a useful biomarker for monitoring therapeutic efficacy in MPS IVA.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Dep. Genetics, UFRGS, INAGEMP, Porto Alegre, Brazil
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | | | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
14
|
Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, Nagao K, Pizarro C, Mackenzie W, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab 2018; 125:18-37. [PMID: 29779902 PMCID: PMC6175643 DOI: 10.1016/j.ymgme.2018.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is an autosomal recessive disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to the accumulation of specific glycosaminoglycans (GAGs), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), which are mainly synthesized in the cartilage. Therefore, the substrates are stored primarily in the cartilage and its extracellular matrix (ECM), leading to a direct impact on bone development and successive systemic skeletal spondylepiphyseal dysplasia. The skeletal-related symptoms for MPS IVA include short stature with short neck and trunk, odontoid hypoplasia, spinal cord compression, tracheal obstruction, obstructive airway, pectus carinatum, restrictive lung, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. The degree of imbalance of growth in bone and other organs and tissues largely contributes to unique skeletal dysplasia and clinical severity. Diagnosis of MPS IVA needs clinical, radiographic, and laboratory testing to make a complete conclusion. To diagnose MPS IVA, total urinary GAG analysis which has been used is problematic since the values overlap with those in age-matched controls. Currently, urinary and blood KS and C6S, the enzyme activity of GALNS, and GALNS molecular analysis are used for diagnosis and prognosis of clinical phenotype in MPS IVA. MPS IVA can be diagnosed with unique characters although this disorder relates closely to other disorders in some characteristics. In this review article, we comprehensively describe clinical, radiographic, biochemical, and molecular diagnosis and clinical assessment tests for MPS IVA. We also compare MPS IVA to other closely related disorders to differentiate MPS IVA. Overall, imbalance of growth in MPS IVA patients underlies unique skeletal manifestations leading to a critical indicator for diagnosis.
Collapse
Affiliation(s)
- Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Lauren Averill
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Heidi Kecskemethy
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mihir Thacker
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kyoko Nagao
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, United States; College of Health Sciences, University of Delaware, Newark, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
15
|
UPLC–MS/MS analysis of keratan sulfate from urine samples collected on filter paper for monitoring & follow-up of Morquio A patients. Bioanalysis 2018; 10:1181-1192. [DOI: 10.4155/bio-2018-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: Since 2014, enzyme replacement therapy (ERT) has been available for treatment of Morquio A syndrome. During clinical trials, urinary keratan sulfate (KS) has been a useful biomarker and showed a marked decrease in patients on ERT, demonstrating therapy efficacy. Unfortunately, quantitative urinary KS testing is not widely available in biochemical genetics laboratories for efficient monitoring and follow-up of treated patients. Materials & methods: A tandem mass spectrometry methodology was devised to analyze KS disaccharides and creatinine in urine specimens collected on filter paper. Results: All Morquio A patients presented abnormal results pretreatment compared with reference values. Conclusion: This collection procedure can be performed by patients at home and filter papers sent by regular mail to a specialized laboratory, facilitating follow-up of patients.
Collapse
|
16
|
Stapleton M, Kubaski F, Mason RW, Yabe H, Suzuki Y, Orii KE, Orii T, Tomatsu S. Presentation and Treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs 2017; 5:295-307. [PMID: 29158997 PMCID: PMC5693349 DOI: 10.1080/21678707.2017.1296761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Mucopolysaccharidosis Type II (MPS II; Hunter syndrome) is an X- linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). IDS deficiency leads to primary accumulation of dermatan sulfate (DS) and heparan sulfate (HS). MPS II is both multi-systemic and progressive. Phenotypes are classified as either attenuated or severe (based on absence or presence of central nervous system impairment, respectively). AREAS COVERED Current treatments available are intravenous enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), anti-inflammatory treatment, and palliative care with symptomatic surgeries. Clinical trials are being conducted for intrathecal ERT and gene therapy is under pre-clinical investigation. Treatment approaches differ based on age, clinical severity, prognosis, availability and feasibility of therapy, and health insurance.This review provides a historical account of MPS II treatment as well as treatment development with insights into benefits and/or limitations of each specific treatment. EXPERT OPINION Conventional ERT and HSCT coupled with surgical intervention and palliative therapy are currently the treatment options available to MPS II patients. Intrathecal ERT and gene therapy are currently under investigation as future therapies. These investigative treatments are critical to address the limitations in treatment of the central nervous system (CNS).
Collapse
Affiliation(s)
- Molly Stapleton
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Francyne Kubaski
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W. Mason
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji E. Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
17
|
Kubaski F, Suzuki Y, Orii K, Giugliani R, Church HJ, Mason RW, Dũng VC, Ngoc CTB, Yamaguchi S, Kobayashi H, Girisha KM, Fukao T, Orii T, Tomatsu S. Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses. Mol Genet Metab 2017; 120:247-254. [PMID: 28065440 PMCID: PMC5346460 DOI: 10.1016/j.ymgme.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML. MATERIAL AND METHODS In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I=16; MPS II=21; MPS III=40; MPS IV=32; MPS VI=10; MPS VII=1; ML=4), and compared them with 115 age-matched controls. Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Subsequently, dermatan sulfate (DS), heparan sulfate (HS-0S, HS-NS), and keratan sulfate (mono-sulfated KS, di-sulfated KS, and ratio of di-sulfated KS in total KS) were measured by MS/MS. RESULTS Untreated patients with MPS I, II, VI, and ML had higher levels of DS compared to control samples. Untreated patients with MPS I, II, III, VI, and ML had higher levels of HS-0S; and untreated patients with MPS II, III and VI and ML had higher levels of HS-NS. Levels of KS were age dependent, so although levels of both mono-sulfated KS and di-sulfated KS were generally higher in patients, particularly for MPS II and MPS IV, age group numbers were not sufficient to determine significance of such changes. However, the ratio of di-sulfated KS in total KS was significantly higher in all MPS patients younger than 5years old, compared to age-matched controls. MPS I and VI patients treated with HSCT had normal levels of DS, and MPS I, VI, and VII treated with ERT or HSCT had normal levels of HS-0S and HS-NS, indicating that both treatments are effective in decreasing blood GAG levels. CONCLUSION Measurement of GAG levels in DBS is useful for diagnosis and potentially for monitoring the therapeutic efficacy in MPS.
Collapse
Affiliation(s)
- Francyne Kubaski
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; INAGEMP, Porto Alegre, Brazil
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Roberto Giugliani
- INAGEMP, Porto Alegre, Brazil; Medical Genetics Service, HCPA, Porto Alegre, Brazil; Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Heather J Church
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Vũ Chí Dũng
- Vietnam National Children's Hospital, Department of Medical Genetics, Metabolism & Endocrinology, Hanoi, Vietnam
| | - Can Thi Bich Ngoc
- Vietnam National Children's Hospital, Department of Medical Genetics, Metabolism & Endocrinology, Hanoi, Vietnam
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | | | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal University, India
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
18
|
Kubaski F, Osago H, Mason RW, Yamaguchi S, Kobayashi H, Tsuchiya M, Orii T, Tomatsu S. Glycosaminoglycans detection methods: Applications of mass spectrometry. Mol Genet Metab 2017; 120:67-77. [PMID: 27746032 PMCID: PMC5477676 DOI: 10.1016/j.ymgme.2016.09.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/26/2022]
Abstract
Glycosaminoglycans (GAGs) are long blocks of negatively charged polysaccharides. They are one of the major components of the extracellular matrix and play multiple roles in different tissues and organs. The accumulation of undegraded GAGs causes mucopolysaccharidoses (MPS). GAGs are associated with other pathological conditions such as osteoarthritis, inflammation, diabetes mellitus, spinal cord injury, and cancer. The need for further understanding of GAG functions and mechanisms of action boosted the development of qualitative and quantitative (alcian blue, toluidine blue, paper and thin layer chromatography, gas chromatography, high pressure liquid chromatography, capillary electrophoresis, 1,9-dimethylmethylene blue, enzyme linked-immunosorbent assay, mass spectrometry) techniques. The availability of quantitative techniques has facilitated translational research on GAGs into the medical field for: 1) diagnosis, monitoring, and screening for MPS; 2) analysis of GAG synthetic and degradation pathways; and 3) determination of physiological and pathological roles of GAGs. This review provides a history of development of GAG assays and insights about the use of tandem mass spectrometry and its applications for GAG analysis.
Collapse
Affiliation(s)
- Francyne Kubaski
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Harumi Osago
- Department of Biochemistry, Shimane University, Shimane, Japan
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | | | - Mikako Tsuchiya
- Department of Biochemistry, Shimane University, Shimane, Japan.
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Gifu University, Gifu, Japan.
| |
Collapse
|
19
|
Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Mason RW, Orii T, Tomatsu S. Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab 2017; 120:78-95. [PMID: 27979613 PMCID: PMC5293636 DOI: 10.1016/j.ymgme.2016.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA.
Collapse
Affiliation(s)
- Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William G Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary C Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Evaluation of urinary keratan sulfate disaccharides in MPS IVA patients using UPLC-MS/MS. Bioanalysis 2016; 8:179-91. [PMID: 26805456 DOI: 10.4155/bio.15.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glycosaminoglycan analysis for the diagnosis of Morquio patients has been daunting due to lack of sensitivity/specificity of the dimethylmethylene blue-based spectrophotometry methodology, routinely used by several clinical laboratories. MS methods have been devised for quantification of keratan sulfate for Morquio patients, but some used tributylamine in mobile phases, or did not use isotope-labeled internal standards. Results & methodology: An UPLC-MS/MS methodology aiming to solve these issues was devised, based on the digestion of keratan sulfate to obtain two major disaccharides. Abnormal urinary results were obtained for all Morquio A patients, while the dimethylmethylene blue-based spectrophotometry methodology showed normal results for four out of nine cases. CONCLUSION The devised method is sensitive, specific and suitable for high-risk screening and longitudinal evaluation of treated patients.
Collapse
|
21
|
Zhao T, Song X, Tan X, Xu L, Yu M, Wang S, Liu X, Wang F. Development of a rapid method for simultaneous separation of hyaluronic acid, chondroitin sulfate, dermatan sulfate and heparin by capillary electrophoresis. Carbohydr Polym 2016; 141:197-203. [PMID: 26877013 DOI: 10.1016/j.carbpol.2016.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 01/04/2023]
Abstract
This study reports the use of diethylenetriamine as background electrolyte for the simultaneous separation of hyaluronan acid, chondroitin sulfate, dermatan sulfate and heparin. The analytes were baseline separated by using an uncoated fused silica capillary at 37°C with a run time of 23min. The migration order, with hyaluronan acid at first and heparin at last, was related to the sulfation degree. The effect of salt concentration on resolution and migration order was also investigated. The developed method was applied to the simultaneous determination of hyaluronan acid and chondroitin sulfate in mouse plasma. Interferences in plasma were removed by protein precipitation and glycosaminoglycans were further purified by ethanol precipitation. The method was validated over the concentration range from 50 to 600μg/mL for hyaluronan acid and 500 to 6000μg/mL for chondroitin sulfate in mouse plasma. Results from assay validations showed that the method was selective and robust.
Collapse
Affiliation(s)
- Ting Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xinlei Song
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoqing Tan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Linghua Xu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mingxiu Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Jinan 250012, China.
| |
Collapse
|
22
|
Tomatsu S, Sawamoto K, Shimada T, Bober MB, Kubaski F, Yasuda E, Mason RW, Khan S, Alméciga-Díaz CJ, Barrera LA, Mackenzie WG, Orii T. Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs 2015; 3:1279-1290. [PMID: 26973801 PMCID: PMC4788508 DOI: 10.1517/21678707.2015.1086640] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Following a Phase III, randomized, double-blind, placebo (PBO)-controlled, multinational study in subjects with mucopolysaccharidosis IVA (MPS IVA), enzyme replacement therapy (ERT) of elosulfase alfa has been approved in several countries. The study was designed to evaluate safety and efficacy of elosulfase alfa in patients with MPS IVA aged 5 years and older. AREAS COVERED Outcomes of clinical trials for MPS IVA have been described. Subjects received either 2.0 mg/kg/week, 2.0 mg/kg/every other week, or PBO, for 24 weeks. The primary endpoint was the change from baseline 6-min walk test (6MWT) distance compared to PBO. The 6MWT results improved in patients receiving 2 mg/kg weekly compared to PBO. The every other week regimen resulted in walk distances comparable to PBO. There was no change from baseline in the 3 Min Stair Climb Test in both treatment groups. Following completion of the initial study, patients, who continued to receive elosulfase alfa 2 mg/kg weekly (QW) for another 48 weeks (for a total of up to 72-week exposure), did not show additional improvement on 6MWT. EXPERT OPINION We suggest that ERT is a therapeutic option for MPS IVA, providing a modest effect and the majority of the effects are seen in the soft tissues.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
- Department of Pediatrics, Gifu University, Gifu, Japan, Japan
| | - Kazuki Sawamoto
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
| | - Tsutomu Shimada
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
- Department of Medical Informatics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michael B. Bober
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
| | - Francyne Kubaski
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Eriko Yasuda
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
- Department of Medical Informatics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert W. Mason
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
| | - Shaukat Khan
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - William G. Mackenzie
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan, Japan
| |
Collapse
|
23
|
Recombinant, truncated B. circulans keratanase-II: Description and characterisation of a novel enzyme for use in measuring urinary keratan sulphate levels via LC-MS/MS in Morquio A syndrome. Clin Biochem 2015; 48:796-802. [PMID: 25866399 DOI: 10.1016/j.clinbiochem.2015.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Morquio A syndrome (mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by deficient N-acetylgalactosamine-6-sulphatase (GALNS) activity. Early and accurate diagnosis of this condition is critical for improved patient outcomes, particularly as enzyme replacement therapy has recently become available. An LC-MS/MS assay utilising keratan sulphate (KS) disaccharides derived from keratanase-II digestion provides a sensitive and specific means for quantitation of urinary KS, a screening biomarker for Morquio A (Oguma et al., 2007; Martell et al., 2011). To ensure a reliable supply of keratanase-II, we sought to produce a Bacillus circulans-derived enzyme via a recombinant approach in Escherichia coli. DESIGN AND METHODS Bioinformatics analysis of the B. circulans keratanase-II enzyme identified likely dispensable C-terminal domains amenable to enhancement via protein engineering. A truncated form of the enzyme was designed to remove the domains predicted to be unnecessary for catalytic activity and detrimental to recombinant expression in E. coli. RESULTS C-terminally truncated, recombinant B. circulans keratanase-II was purified to >98% homogeneity and extensively characterised, demonstrating desired activity, specificity and utility in LC-MS-based quantitation of urinary KS from Morquio A and control samples, and is functionally indistinguishable from full-length, native B. circulans-derived keratanase-II. CONCLUSIONS This novel, recombinant keratanase-II meets all performance requirements and can be produced in a rapid and reproducible manner. We speculate that other related bacterial enzymes of biomedical or industrial interest may be amenable to similar engineered enhancements.
Collapse
|
24
|
Tomatsu S, Sawamoto K, Alméciga-Díaz CJ, Shimada T, Bober MB, Chinen Y, Yabe H, Montaño AM, Giugliani R, Kubaski F, Yasuda E, Rodríguez-López A, Espejo-Mojica AJ, Sánchez OF, Mason RW, Barrera LA, Mackenzie WG, Orii T. Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug Des Devel Ther 2015; 9:1937-53. [PMID: 25897204 PMCID: PMC4389814 DOI: 10.2147/dddt.s68562] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with mucopolysaccharidosis IVA (MPS IVA) can present with systemic skeletal dysplasia, leading to a need for multiple orthopedic surgical procedures, and often become wheelchair bound in their teenage years. Studies on patients with MPS IVA treated by enzyme replacement therapy (ERT) showed a sharp reduction on urinary keratan sulfate, but only modest improvement based on a 6-minute walk test and no significant improvement on a 3-minute climb-up test and lung function test compared with the placebo group, at least in the short-term. Surgical remnants from ERT-treated patients did not show reduction of storage materials in chondrocytes. The impact of ERT on bone lesions in patients with MPS IVA remains limited. ERT seems to be enhanced in a mouse model of MPS IVA by a novel form of the enzyme tagged with a bone-targeting moiety. The tagged enzyme remained in the circulation much longer than untagged native enzyme and was delivered to and retained in bone. Three-month-old MPS IVA mice treated with 23 weekly infusions of tagged enzyme showed marked clearance of the storage materials in bone, bone marrow, and heart valves. When treatment was initiated at birth, reduction of storage materials in tissues was even greater. These findings indicate that specific targeting of the enzyme to bone at an early stage may improve efficacy of ERT for MPS IVA. Recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21 (DE3) (erGALNS) and in the methylotrophic yeast Pichia pastoris (prGALNS) has been produced as an alternative to the conventional production in Chinese hamster ovary cells. Recombinant GALNS produced in microorganisms may help to reduce the high cost of ERT and the introduction of modifications to enhance targeting. Although only a limited number of patients with MPS IVA have been treated with hematopoietic stem cell transplantation (HSCT), beneficial effects have been reported. A wheelchair-bound patient with a severe form of MPS IVA was treated with HSCT at 15 years of age and followed up for 10 years. Radiographs showed that the figures of major and minor trochanter appeared. Loud snoring and apnea disappeared. In all, 1 year after bone marrow transplantation, bone mineral density at L2-L4 was increased from 0.372 g/cm(2) to 0.548 g/cm(2) and was maintained at a level of 0.48±0.054 for the following 9 years. Pulmonary vital capacity increased approximately 20% from a baseline of 1.08 L to around 1.31 L over the first 2 years and was maintained thereafter. Activity of daily living was improved similar to the normal control group. After bilateral osteotomies, a patient can walk over 400 m using hip-knee-ankle-foot orthoses. This long-term observation of a patient shows that this treatment can produce clinical improvements although bone deformity remained unchanged. In conclusion, ERT is a therapeutic option for MPS IVA patients, and there are some indications that HSCT may be an alternative to treat this disease. However, as neither seems to be a curative therapy, at least for the skeletal dysplasia in MPS IVA patients, new approaches are investigated to enhance efficacy and reduce costs to benefit MPS IVA patients.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Kazuki Sawamoto
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Tsutomu Shimada
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Michael B Bober
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | - Roberto Giugliani
- Medical Genetics Service/HCPA and Department of Genetics/UFRGS, Porto Alegre, Brazil
| | - Francyne Kubaski
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Eriko Yasuda
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert W Mason
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
25
|
Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB. JIMD Rep 2015; 21:1-13. [PMID: 25712379 DOI: 10.1007/8904_2014_330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/29/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023] Open
Abstract
Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.
Collapse
|
26
|
Tomatsu S, Montaño AM, Oikawa H, Dung VC, Hashimoto A, Oguma T, Gutiérrez ML, Takahashi T, Shimada T, Orii T, Sly WS. Enzyme replacement therapy in newborn mucopolysaccharidosis IVA mice: early treatment rescues bone lesions? Mol Genet Metab 2015; 114:195-202. [PMID: 24953405 PMCID: PMC4256128 DOI: 10.1016/j.ymgme.2014.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 02/02/2023]
Abstract
We treated mucopolysaccharidosis IVA (MPS IVA) mice to assess the effects of long-term enzyme replacement therapy (ERT) initiated at birth, since adult mice treated by ERT showed little improvement in bone pathology [1]. To conduct ERT in newborn mice, we used recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in a CHO cell line. First, to observe the tissue distribution pattern, a dose of 250units/g body weight was administered intravenously in MPS IVA mice at day 2 or 3. The infused enzyme was primarily recovered in the liver and spleen, with detectable activity in the bone and brain. Second, newborn ERT was conducted after a tissue distribution study. The first injection of newborn ERT was performed intravenously, the second to fourth weekly injections were intraperitoneal, and the remaining injections from 5th to 14th weeks were intravenous into the tail vein. MPS IVA mice treated with GALNS showed clearance of lysosomal storage in the liver and spleen, and sinus lining cells in bone marrow. The column structure of the growth plate was organized better than that in adult mice treated with ERT; however, hyaline and fibrous cartilage cells in the femur, spine, ligaments, discs, synovium, and periosteum still had storage materials to some extent. Heart valves were refractory to the treatment. Levels of serum keratan sulfate were kept normal in newborn ERT mice. In conclusion, the enzyme, which enters the cartilage before the cartilage cell layer becomes mature, prevents disorganization of column structure. Early treatment from birth leads to partial remission of bone pathology in MPS IVA mice.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University Doisy Research Center, St. Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Hirotaka Oikawa
- Suzuka University of Medical Science, School of Pharmacy, Japan
| | - Vu Chi Dung
- Department of Endocrinology, Metabolism & Genetics, Vietnam National Hospital of Pediatrics, Hanoi, Viet Nam
| | | | | | - Monica L Gutiérrez
- Department of Pediatrics, Saint Louis University Doisy Research Center, St. Louis, MO, USA
| | - Tatsuo Takahashi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Tsutomu Shimada
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tadao Orii
- Department of Pediatrics, Gifu University, School of Medicine, Gifu, Japan
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Shimada T, Kelly J, LaMarr WA, van Vlies N, Yasuda E, Mason RW, Mackenzie W, Kubaski F, Giugliani R, Chinen Y, Yamaguchi S, Suzuki Y, Orii KE, Fukao T, Orii T, Tomatsu S. Novel heparan sulfate assay by using automated high-throughput mass spectrometry: Application to monitoring and screening for mucopolysaccharidoses. Mol Genet Metab 2014; 113:92-9. [PMID: 25092413 PMCID: PMC4177953 DOI: 10.1016/j.ymgme.2014.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 01/02/2023]
Abstract
Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4-5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within 10s (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in the blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in the blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in the blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to those of control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity in an HS assay, indicating that HT-MS/MS may be feasible for diagnosis, monitoring, and newborn screening of MPS.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Kelly
- Agilent Technologies, Inc., Wakefield, MA, USA
| | | | - Naomi van Vlies
- Laboratory of Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Eriko Yasuda
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | | | - Francyne Kubaski
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Roberto Giugliani
- Medical Genetics Service, HCPA and Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine University of the Ryukyus, Okinawa, Japan
| | | | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji E Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
28
|
Tomatsu S, Shimada T, Mason RW, Montaño AM, Kelly J, LaMarr WA, Kubaski F, Giugliani R, Guha A, Yasuda E, Mackenzie W, Yamaguchi S, Suzuki Y, Orii T. Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Metabolites 2014; 4:655-79. [PMID: 25116756 PMCID: PMC4192686 DOI: 10.3390/metabo4030655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 01/18/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiency of the lysosomal enzymes essential for catabolism of glycosaminoglycans (GAGs). Accumulation of undegraded GAGs results in dysfunction of multiple organs, resulting in distinct clinical manifestations. A range of methods have been developed to measure specific GAGs in various human samples to investigate diagnosis, prognosis, pathogenesis, GAG interaction with other molecules, and monitoring therapeutic efficacy. We established ELISA, liquid chromatography tandem mass spectrometry (LC-MS/MS), and an automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) to identify epitopes (ELISA) or disaccharides (MS/MS) derived from different GAGs (dermatan sulfate, heparan sulfate, keratan sulfate, and/or chondroitin sulfate). These methods have a high sensitivity and specificity in GAG analysis, applicable to the analysis of blood, urine, tissues, and cells. ELISA is feasible, sensitive, and reproducible with the standard equipment. HT-MS/MS yields higher throughput than conventional LC-MS/MS-based methods while the HT-MS/MS system does not have a chromatographic step and cannot distinguish GAGs with identical molecular weights, leading to a limitation of measurements for some specific GAGs. Here we review the advantages and disadvantages of these methods for measuring GAG levels in biological specimens. We also describe an unexpected secondary elevation of keratan sulfate in patients with MPS that is an indirect consequence of disruption of catabolism of other GAGs.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Tsutomu Shimada
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Robert W Mason
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, MO 63104, USA.
| | - Joan Kelly
- Agilent Technologies, Inc., Wakefield, MA 01880, USA.
| | | | - Francyne Kubaski
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Roberto Giugliani
- Department of Genetics/UFRGS, Medical Genetics Service/HCPA, Porto Alegre 90035-903, Brazil.
| | - Aratrik Guha
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Eriko Yasuda
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - William Mackenzie
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane 693-8501, Japan.
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu 501-1194, Japan.
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu 501-1194, Japan.
| |
Collapse
|
29
|
Morrone A, Tylee KL, Al-Sayed M, Brusius-Facchin AC, Caciotti A, Church HJ, Coll MJ, Davidson K, Fietz MJ, Gort L, Hegde M, Kubaski F, Lacerda L, Laranjeira F, Leistner-Segal S, Mooney S, Pajares S, Pollard L, Ribeiro I, Wang RY, Miller N. Molecular testing of 163 patients with Morquio A (Mucopolysaccharidosis IVA) identifies 39 novel GALNS mutations. Mol Genet Metab 2014; 112:160-70. [PMID: 24726177 PMCID: PMC4203673 DOI: 10.1016/j.ymgme.2014.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/09/2023]
Abstract
Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles have a decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided.
Collapse
Affiliation(s)
- A Morrone
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence Italy
| | - K L Tylee
- Willink Biochemical Genetics, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital Oxford Road, Manchester, UK
| | - M Al-Sayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A C Brusius-Facchin
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - A Caciotti
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy
| | - H J Church
- Willink Biochemical Genetics, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital Oxford Road, Manchester, UK
| | - M J Coll
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - K Davidson
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - M J Fietz
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - L Gort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - M Hegde
- Emory Genetics Laboratory, Emory University School of Medicine, Atlanta, GA, USA
| | - F Kubaski
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - L Lacerda
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - F Laranjeira
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - S Leistner-Segal
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - S Mooney
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - S Pajares
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - L Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - I Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - R Y Wang
- Children's Hospital of Orange County, Orange, CA, USA
| | - N Miller
- BioMarin Pharmaceutical Inc., Novato, CA, USA.
| |
Collapse
|
30
|
Chondroitin 6-Sulfate as a Novel Biomarker for Mucopolysaccharidosis IVA and VII. JIMD Rep 2014; 16:15-24. [PMID: 24850234 DOI: 10.1007/8904_2014_311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Chondroitin 6-sulfate (C6S), a glycosaminoglycan (GAG), is distributed mainly in the growth plates, aorta, and cornea; however, the physiological function of C6S is not fully understood. One of the limitations is that no rapid, accurate quantitative method to measure C6S has been established. Mucopolysaccharidosis IVA and VII (MPS IVA and VII) are caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase and β-D-glucuronidase, respectively, resulting in accumulation of C6S and other GAG(s). While levels of keratan sulfate (KS), heparan sulfate, and dermatan sulfate in samples from MPS patients are well described, this is the first report of quantitative analysis of C6S levels in samples from MPS IVA and VII patients.We developed a method to digest polymeric C6S and measure resultant disaccharides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). C6S levels were measured in the blood from control subjects and patients with MPS IVA and VII aged from 0 to 58 years of age. We also assayed KS levels in the same samples for comparison with C6S.Levels of C6S in the blood decreased with age and were significantly elevated in patients with MPS IVA and VII, compared with age-matched controls. Levels of KS in patients with MPS IVA were also higher than those in age-matched controls, although differences were less pronounced than with C6S. Combining KS and C6S data, discriminated patients with MPS IVA from age-matched control subjects were better than either C6S or KS levels alone.In conclusion, this first report showing that blood levels of C6S are quantitatively evaluated in patients with MPS IVA and VII indicates that C6S could be a useful biomarker for these metabolic disorders.
Collapse
|
31
|
Capillary electrophoresis for total glycosaminoglycan analysis. Anal Bioanal Chem 2014; 406:4617-26. [PMID: 24817364 DOI: 10.1007/s00216-014-7859-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 01/30/2023]
Abstract
A capillary zone electrophoresis-laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (≤1.03% for intraday and ≤4.4% for interday) and the peak area values (≤5.6% for intra- and ≤8.69% for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.
Collapse
|
32
|
Tomatsu S, Shimada T, Mason RW, Kelly J, LaMarr WA, Yasuda E, Shibata Y, Futatsumori H, Montaño AM, Yamaguchi S, Suzuki Y, Orii T. Assay for Glycosaminoglycans by Tandem Mass Spectrometry and its Applications. ACTA ACUST UNITED AC 2014; 2014:006. [PMID: 25068074 PMCID: PMC4109812 DOI: 10.4172/2155-9872.s2-006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycosaminoglycans (GAGs) are distributed in the whole body and play a variety of important physiological roles associated with inflammation, growth, coagulation, fibrinolysis, lipolysis, and cell-matrix biology. Accumulation of undegraded GAGs in lysosomes gives rise to a distinct clinical syndrome, mucopolysaccharidoses. Measurement of each specific GAG in a variety of specimens is urgently required to understand GAG interaction with other molecules, physiological status of patients, and prognosis and pathogenesis of the disease. We established a highly sensitive and accurate tandem mass spectrometry (LC-MS/MS) method for measurements of disaccharides derived from four specific GAGs [dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS), and chondroitin sulfate (CS)]. Disaccharides were produced by specific enzyme digestion of each GAG, and quantified by negative ion mode of multiple reaction monitoring. Subclasses of HS and GAGs with identical molecular weights can be separated using a Hypercarbcolumn (2.0 mm×50 mm, 5 μm) with an aectonitrile gradient in ammonium acetate (pH 11.0). We also developed a GAG assay by RapidFire with tandem mass spectrometry (RF-MS/MS). The RF system consists of an integrated solid phase extraction robot that binds and de-salts samples from assay plates and directly injects them into a MS/MS detector, reducing sample processing time to ten seconds. RF-MS/MS consequently yields much faster throughput than conventional LC-MS/MS-based methods. However, the RF system does not have a chromatographic step, and therefore, cannot distinguish GAGs that have identical molecular weights. Both methods can be applied to analysis of dried blood spots, blood, and urine specimens. In this article, we compare the assay methods for GAGs and describe their potential applications.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tsutomu Shimada
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Kelly
- Agilent Technologies, Inc., Wakefield, MA, USA
| | | | - Eriko Yasuda
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yuniko Shibata
- Central Research Lab., R&D Div. Seikagaku Co. Tokyo, Japan
| | | | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, Missouri, USA
| | | | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
33
|
Tomatsu S, Fujii T, Fukushi M, Oguma T, Shimada T, Maeda M, Kida K, Shibata Y, Futatsumori H, Montaño AM, Mason RW, Yamaguchi S, Suzuki Y, Orii T. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab 2013; 110:42-53. [PMID: 23860310 PMCID: PMC4047214 DOI: 10.1016/j.ymgme.2013.06.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 11/21/2022]
Abstract
Mucopolysaccharidoses (MPS) are caused by deficiency of lysosomal enzyme activities needed to degrade glycosaminoglycans (GAGs), which are long unbranched polysaccharides consisting of repeating disaccharides. GAGs include: chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS), and hyaluronan. Their catabolism may be blocked singly or in combination depending on the specific enzyme deficiency. There are 11 known enzyme deficiencies, resulting in seven distinct forms of MPS with a collective incidence of higher than 1 in 25,000 live births. Accumulation of undegraded metabolites in lysosomes gives rise to distinct clinical syndromes. Generally, the clinical conditions progress if untreated, leading to developmental delay, systemic skeletal deformities, and early death. MPS disorders are potentially treatable with enzyme replacement therapy or hematopoietic stem cell transplantation. For maximum benefit of available therapies, early detection and intervention are critical. We recently developed a novel high-throughput multiplex method to assay DS, HS, and KS simultaneously in blood samples by using high performance liquid chromatography/tandem mass spectrometry for MPS. The overall performance metrics of HS and DS values on MPS I, II, and VII patients vs. healthy controls at newborns were as follows using a given set of cut-off values: sensitivity, 100%; specificity, 98.5-99.4%; positive predictive value, 54.5-75%; false positive rate, 0.62-1.54%; and false negative rate, 0%. These findings show that the combined measurements of these three GAGs are sensitive and specific for detecting all types of MPS with acceptable false negative/positive rates. In addition, this method will also be used for monitoring therapeutic efficacy. We review the history of GAG assay and application to diagnosis for MPS.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hendriksz CJ, Harmatz P, Beck M, Jones S, Wood T, Lachman R, Gravance CG, Orii T, Tomatsu S. Review of clinical presentation and diagnosis of mucopolysaccharidosis IVA. Mol Genet Metab 2013; 110:54-64. [PMID: 23665161 PMCID: PMC3755102 DOI: 10.1016/j.ymgme.2013.04.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/26/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) was described in 1929 by Luis Morquio from Uruguay and James Brailsford from England, and was later found as an autosomal recessive lysosomal storage disease. MPS IVA is caused by mutations in the gene encoding the enzyme, N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Reduced GALNS activity results in impaired catabolism of two glycosaminoglycans (GAGs), chondroitin-6-sulfate (C6S) and keratan sulfate (KS). Clinical presentations of MPS IVA reflect a spectrum of progression from a severe "classical" phenotype to a mild "attenuated" phenotype. More than 180 different mutations have been identified in the GALNS gene, which likely explains the phenotypic heterogeneity of the disorder. Accumulation of C6S and KS manifests predominantly as short stature and skeletal dysplasia (dysostosis multiplex), including atlantoaxial instability and cervical cord compression. However, abnormalities in the visual, auditory, cardiovascular, and respiratory systems can also affect individuals with MPS IVA. Diagnosis is typically based on clinical examination, skeletal radiographs, urinary GAG, and enzymatic activity of GALNS in blood cells or fibroblasts. Deficiency of GALNS activity is a common assessment for the laboratory diagnosis of MPS IVA; however, with recently increased availability, gene sequencing for MPS IVA is often used to confirm enzyme results. As multiple clinical presentations are observed, diagnosis of MPS IVA may require multi-system considerations. This review provides a history of defining MPS IVA and how the understanding of the disease manifestations has changed over time. A summary of the accumulated knowledge is presented, including information from the International Morquio Registry. The classical phenotype is contrasted with attenuated cases, which are now being recognized and diagnosed more frequently. Laboratory based diagnoses of MPS IVA are also discussed.
Collapse
Affiliation(s)
- C J Hendriksz
- University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wei W, Miller RL, Leary JA. Method development and analysis of free HS and HS in proteoglycans from pre- and postmenopausal women: evidence for biosynthetic pathway changes in sulfotransferase and sulfatase enzymes. Anal Chem 2013; 85:5917-23. [PMID: 23659730 DOI: 10.1021/ac400690g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparan sulfate (HS) is one of the most complex and informative biopolymers found on the cell surface or in the extracellular matrix as either free HS fragments or constituents of HS proteoglycans (HSPGs). Analysis of free HS and HSPG sugar chains in human serum at the disaccharide level has great potential for early disease diagnosis and prognosis; however, the low concentration of HS in human serum, together with the complexity of the serum matrix, limits the information on HS. In this study, we present and validate the development of a new sensitive method for in-depth compositional analysis of free HS and HSPG sugar chains. This protocol involved several steps including weak anion exchange chromatography, ultrafiltration, and solid-phase extraction for enhanced detection prior to LC-MS/MS analysis. Using this protocol, a total of 51 serum samples from 26 premenopausal and 25 postmenopausal women were analyzed. Statistically significant differences in heparin/HS disaccharide profiles were observed. The proportion of N-acetylation and N-sulfation in both free HS and HSPG sugar chains were significantly different between pre- and postmenopausal women, indicating changes in N-deacetylase/N-sulfotransferases (NDSTs), the enzymes involved in the initial step of the biosynthetic pathway. Differences in the proportion of 6-O-sulfation suggest that 6-O-sulfotransferase and/or 6-O-sulfatase enzymes may also be implicated.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
36
|
Tomatsu S, Mackenzie WG, Theroux MC, Mason RW, Thacker MM, Shaffer TH, Montaño AM, Rowan D, Sly W, Alméciga-Díaz CJ, Barrera LA, Chinen Y, Yasuda E, Ruhnke K, Suzuki Y, Orii T. Current and emerging treatments and surgical interventions for Morquio A syndrome: a review. RESEARCH AND REPORTS IN ENDOCRINE DISORDERS 2012; 2012:65-77. [PMID: 24839594 PMCID: PMC4020877 DOI: 10.2147/rred.s37278] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with mucopolysaccharidosis type IVA (MPS IVA; Morquio A syndrome) have accumulation of the glycosaminoglycans, keratan sulfate, and chondroitin-6-sulfate, in bone and cartilage, causing systemic spondyloepiphyseal dysplasia. Features include lumbar gibbus, pectus carinatum, faring of the rib cage, marked short stature, cervical instability and stenosis, kyphoscoliosis, genu valgum, and laxity of joints. Generally, MPS IVA patients are wheelchair-bound as teenagers and do not survive beyond the second or third decade of life as a result of severe bone dysplasia, causing restrictive lung disease and airway narrowing, increasing potential for pneumonia and apnea; stenosis and instability of the upper cervical region; high risk during anesthesia administration due to narrowed airway as well as thoracoabdominal dysfunction; and surgical complications. Patients often need multiple surgical procedures, including cervical decompression and fusion, hip reconstruction and replacement, and femoral or tibial osteotomy, throughout their lifetime. Current measures to intervene in disease progression are largely palliative, and improved therapies are urgently needed. A clinical trial for enzyme replacement therapy (ERT) and an investigational trial for hematopoietic stem cell transplantation (HSCT) are underway. Whether sufficient enzyme will be delivered effectively to bone, especially cartilage (avascular region) to prevent the devastating skeletal dysplasias remains unclear. This review provides an overview of historical aspects of studies on MPS IVA, including clinical manifestations and pathogenesis of MPS IVA, orthopedic surgical interventions, and anesthetic care. It also describes perspectives on potential ERT, HSCT, and gene therapy.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | | | - Mary C Theroux
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Mihir M Thacker
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Thomas H Shaffer
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | | | - Daniel Rowan
- Department of Pediatrics, Saint Louis University, St Louis, MO, USA
| | - William Sly
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO, USA
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Eriko Yasuda
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Kristen Ruhnke
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
37
|
Validation of an LC-MS/MS assay for detecting relevant disaccharides from keratan sulfate as a biomarker for Morquio A syndrome. Bioanalysis 2012; 3:1855-66. [PMID: 21877895 DOI: 10.4155/bio.11.172] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is an inherited lysosomal storage disease caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS), an enzyme required for stepwise degradation of keratan sulfate (KS). We have developed a selective, sensitive, accurate and precise LC-MS/MS assay for the KS-derived disaccharides Galβ1-4GlcNAc(6S) and Gal(6S)β1-4GlcNAc(6S) in human urine and plasma using keratanase II digestion. RESULTS Mean accuracy was 96-106% in urine and 97-108% in plasma. Precision was high, with relative standard deviations of 1-2% (intra-day) and 2-5% (inter-day) in urine and 1-2% (intra-day) and 4-7% (inter-day) in plasma. The lower limit of quantitation was 0.026 µg/ml (plasma) and 0.104 µg/ml (urine), with a quantitation range of 0.026-5 µg/ml (plasma) and 0.104-20 µg/ml (urine). CONCLUSION Clinical sample analysis in 168 MPS IVA patients and 225 healthy controls demonstrates the clinical utility of this method.
Collapse
|
38
|
Hintze JP, Tomatsu S, Fujii T, Montaño AM, Yamaguchi S, Suzuki Y, Fukushi M, Ishimaru T, Orii T. Comparison of liquid chromatography-tandem mass spectrometry and sandwich ELISA for determination of keratan sulfate in plasma and urine. Biomark Insights 2011; 6:69-78. [PMID: 21792275 PMCID: PMC3140273 DOI: 10.4137/bmi.s7451] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background and aim: Mucopolysaccharidosis IVA (MPS IVA) leads to skeletal dysplasia through excessive storage of chondroitin-6-sulfate and keratan sulfate (KS). KS is synthesized mainly in cartilage and released into circulation, making it a critical biomarker for MPS IVA to evaluate clinical course and effectiveness of therapies. Therefore, an accurate and sensitive method is required to measure KS levels. Material and methods: Using sandwich ELISA and liquid chromatography tandem mass spectrometry (LC/MS/MS) assays, we measured KS levels in blood and urine from MPS IVA patients and healthy controls to evaluate comparability of results. Blood (patients, n = 110; controls, n = 364) and urine (patients, n = 103; controls, n = 326) specimens were obtained. Results: Plasma and urine KS measurements in patients were age-dependent and higher than age-matched controls. We observed a moderate correlation (r = 0.666; P < 0.001) between urine KS measurements and a weak correlation (r = 0.333; P = 0.002) between plasma KS measurements by ELISA and LC/MS/MS methods in patients. No correlation was found between plasma KS measurements in controls. The difference between KS measurements assayed by LC/MS/MS and ELISA was greater in controls than in patients. A moderate correlation between blood and urine KS measurements in the same individual was observed. Conclusion: These findings indicate that both methods to measure blood and urine KS are suitable for diagnosis, monitoring therapies, and longitudinal assessment of the disease course in MPS IVA, but the LC/MS/MS method measures over 10 times more KS present in body fluids.
Collapse
Affiliation(s)
- Jonathan P Hintze
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, de Carvalho TG, Gutiérrez ML, Yamaguchi S, Suzuki Y, Fukushi M, Kida K, Kubota M, Barrera L, Orii T. Validation of keratan sulfate level in mucopolysaccharidosis type IVA by liquid chromatography-tandem mass spectrometry. J Inherit Metab Dis 2010; 33 Suppl 3:S35-42. [PMID: 20107903 DOI: 10.1007/s10545-009-9013-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, Morquio A disease), a progressive lysosomal storage disease, causes skeletal chondrodysplasia through excessive storage of keratan sulfate (KS). KS is synthesized mainly in cartilage and released to the circulation. The excess storage of KS disrupts cartilage, consequently releasing more KS into circulation, which is a critical biomarker for MPS IVA. Thus, assessment of KS level provides a potential screening strategy and determines clinical course and efficacy of therapies. We have recently developed a tandem mass spectrometry liquid chromatography [LC/MS/MS] method to assay KS levels in blood. Forty-nine blood specimens from patients with MPS IVA [severe (n = 33), attenuated (n = 11) and undefined (n = 5)] were analyzed for comparison of blood KS concentration with that of healthy subjects and for correlation with clinical severity. Plasma samples were digested by keratanase II to obtain disaccharides of KS. Digested samples were assayed by LC/MS/MS. We found that blood KS levels (0.4-26 µg/ml) in MPS IVA patients were significantly higher than those in age-matched controls (0.67-4.6 µg/ml; P < 0.0001). It was found that blood KS level varied with age and clinical severity in the patients. Blood KS levels in MPS IVA peaked between 2 years and 5 years of age (mean 11.4 µg/ml). Blood KS levels in severe MPS IVA (mean 7.3 µg/ml) were higher than in the attenuated form (mean 2.1 µg/ml) (P = 0.012). We also found elevated blood KS levels in other types of MPS. These findings indicate that the new KS assay for blood is suitable for early diagnosis and longitudinal assessment of disease severity in MPS IVA.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University Doisy Research Center, 1100 South Grand Blvd, St Louis, MO 63104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
West C, Elfakir C, Lafosse M. Porous graphitic carbon: A versatile stationary phase for liquid chromatography. J Chromatogr A 2010; 1217:3201-16. [DOI: 10.1016/j.chroma.2009.09.052] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
41
|
Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, de Carvalho TG, Gutiérrez ML, Yamaguchi S, Suzuki Y, Fukushi M, Sakura N, Barrera L, Kida K, Kubota M, Orii T. Dermatan sulfate and heparan sulfate as a biomarker for mucopolysaccharidosis I. J Inherit Metab Dis 2010; 33:141-50. [PMID: 20162367 DOI: 10.1007/s10545-009-9036-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis I (MPS I) is an autosomal recessive disorder caused by deficiency of alpha-L-iduronidase leading to accumulation of its catabolic substrates, dermatan sulfate (DS) and heparan sulfate (HS), in lysosomes. This results in progressive multiorgan dysfunction and death in early childhood. The recent success of enzyme replacement therapy (ERT) for MPS I highlights the need for biomarkers that reflect response to such therapy. To determine which biochemical markers are better, we determined serum and urine DS and HS levels by liquid chromatography tandem mass spectrometry in ERT-treated MPS I patients. The group included one Hurler, 11 Hurler/Scheie, and two Scheie patients. Seven patients were treated from week 1, whereas the other seven were treated from week 26. Serum and urine DS (DeltaDi-4S/6S) and HS (DeltaDiHS-0S, DeltaDiHS-NS) were measured at baseline, week 26, and week 72. Serum DeltaDi-4S/6S, DeltaDiHS-0S, and DeltaDiHS-NS levels decreased by 72%, 56%, and 56%, respectively, from baseline at week 72. Urinary glycosaminoglycan level decreased by 61.2%, whereas urine DeltaDi-4S/6S, DeltaDiHS-0S, and DeltaDiHS-NS decreased by 66.8%, 71.8%, and 71%, respectively. Regardless of age and clinical severity, all patients showed marked decrease of DS and HS in blood and urine samples. We also evaluated serum DS and HS from dried blood-spot samples of three MPS I newborn patients, showing marked elevation of DS and HS levels compared with those in control newborns. In conclusion, blood and urine levels of DS and HS provide an intrinsic monitoring and screening tool for MPS I patients.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University, St Louis, MO 63104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tomatsu S, Montaño AM, Dung VC, Ohashi A, Oikawa H, Oguma T, Orii T, Barrera L, Sly WS. Enhancement of drug delivery: enzyme-replacement therapy for murine Morquio A syndrome. Mol Ther 2010; 18:1094-102. [PMID: 20332769 DOI: 10.1038/mt.2010.32] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A disease) is an inherited lysosomal storage disorder that features skeletal chondrodysplasia caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Human GALNS was bioengineered with the N-terminus extended by the hexaglutamate sequence (E6) to improve targeting to bone (E6-GALNS). We initially assessed blood clearance and tissue distribution. Next, to assess the effectiveness of storage clearance and reversal of pathological phenotype, a dose of 250 U/g of enzyme was given weekly to Morquio A mice (adults: 12 or 24 weeks, newborn: 8 weeks). Sulfatase modifier factor 1 (SUMF1) was co-transfected to activate the enzyme fully. The E6-GALNS tagged enzyme had markedly prolonged clearance from circulation, giving over 20 times exposure time in blood, compared to untagged enzyme. The tagged enzyme was retained longer in bone, with residual enzyme activity demonstrable at 48 hours after infusion. The pathological findings in adult mice treated with tagged enzyme showed substantial clearance of the storage materials in bone, bone marrow, and heart valves, especially after 24 weekly infusions. Mice treated from the newborn period showed marked reduction of storage materials in tissues investigated. These findings indicate the feasibility of using tagged enzyme to enhance delivery and pathological effectiveness in Morquio A mice.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University, St Louis, Missouri 63104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, Gutiérrez ML, Yamaguchi S, Suzuki Y, Fukushi M, Barrera LA, Kida K, Kubota M, Orii T. Validation of disaccharide compositions derived from dermatan sulfate and heparan sulfate in mucopolysaccharidoses and mucolipidoses II and III by tandem mass spectrometry. Mol Genet Metab 2010; 99:124-31. [PMID: 19932038 DOI: 10.1016/j.ymgme.2009.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 10/20/2022]
Abstract
Glycosaminoglycans (GAGs) are accumulated in various organs in both mucopolysaccharidoses (MPS) and mucolipidoses II and III (ML II and III). MPS and ML II and III patients can not properly degrade dermatan sulfate (DS) and/or heparan sulfate (HS). HS storage occurs in the brain leading to neurological signs while DS storage involves mainly visceral and skeletal manifestations. Excessive DS and HS released into circulation and thus blood levels of both are elevated, therefore, DS and HS in blood could be critical biomarkers for MPS and ML. Such measurement can provide a potential early screening, assessment of the clinical course and efficacy of therapies. We here assay DS and HS levels in MPS and ML patients using liquid chromatography tandem mass spectrometry (LC/MS/MS). Plasma samples were digested by heparitinase and chondroitinase B to obtain disaccharides of DS and HS, followed by LC/MS/MS analysis. One hundred-twenty samples from patients and 112 control samples were analyzed. We found that all MPS I, II, III and VI patients had a significant elevation of all DS+HS compositions analyzed in plasma, compared with the controls (P<0.0001). Specificity and sensitivity was 100% if the cut off value is 800 ng/ml between control and these types of MPS group. All MPS I, II and III patients also had a significant elevation of plasma HS, compared with the controls (P<0.0001). All MPS VI patients had a significant elevation of plasma DS, compared with the controls (P<0.0001). These findings suggest measurement of DS and/or HS levels by LC/MS/MS is applicable to the screening for MPS I, II, III and VI patients.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University, St Louis, MO, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Montaño AM, Oikawa H, Tomatsu S, Nishioka T, Vogler C, Gutierrez MA, Oguma T, Tan Y, Grubb JH, Dung VC, Ohashi A, Miyamoto KI, Orii T, Yoneda Y, Sly WS. Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Mol Genet Metab 2008; 94:178-89. [PMID: 18359257 DOI: 10.1016/j.ymgme.2008.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/21/2022]
Abstract
We have tested an acidic oligopeptide-based targeting system for delivery of enzymes to tissues, especially bone and brain, in a murine mucopolysaccharidosis type VII (MPS VII) model. This strategy is based upon tagging a short peptide consisting of acidic amino acids (AAA) to N terminus of human beta-glucuronidase (GUS). The pharmacokinetics, biodistribution, and the pathological effect on MPS VII mouse after 12 weekly infusions were determined for recombinant human untagged and tagged GUS. The tagged GUS was taken up by MPS VII fibroblasts in a mannose 6-phosphate receptor-dependent manner. Intravenously injected AAA-tagged enzyme had five times more prolonged blood clearance compared with the untagged enzyme. The tagged enzyme was delivered effectively to bone, bone marrow, and brain in MPS VII mice and was effective in reversing the storage pathology. The storage in osteoblasts was cleared similarly with both enzyme types. However, cartilage showed a little response to any of the enzymes. The tagged enzyme reduced storage in cortical neurons, hippocampus, and glia cells. A highly sensitive method of tandem mass spectrometry on serum indicated that the concentration of serum dermatan sulfate and heparan sulfate in mice treated with the tagged enzyme decreased more than the untagged enzyme. These preclinical studies suggest that this AAA-based targeting system may enhance enzyme-replacement therapy.
Collapse
Affiliation(s)
- Adriana M Montaño
- Department of Pediatrics, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harangi J, Gulyás Z, Hajdú I, Makuta M. Characterization of Porous Graphitic Carbon LC Phase with some Carbohydrate Derivatives. Chromatographia 2008. [DOI: 10.1365/s10337-008-0665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|