1
|
Synthesis and Pharmacological Characterization of 2-Aminoethyl Diphenylborinate (2-APB) Derivatives for Inhibition of Store-Operated Calcium Entry (SOCE) in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21165604. [PMID: 32764353 PMCID: PMC7460636 DOI: 10.3390/ijms21165604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.
Collapse
|
2
|
De La Rosa JAM, García-Castañeda M, Nishigaki T, Gómora JC, Mancilla-Percino T, Ávila G. Interaction of MDIMP with the Voltage-Gated Calcium Channels. Mol Pharmacol 2020; 98:211-221. [PMID: 32587097 DOI: 10.1124/mol.120.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022] Open
Abstract
Amino acid-derived isoindolines are synthetic compounds that were created with the idea of investigating their biological actions. The amino acid moiety was included on the grounds that it may help to avoid toxic effects. Recently, the isoindoline MDIMP was shown to inhibit both cardiac excitation-contraction coupling and voltage-dependent calcium channels. Here, we revealed that MDIMP binds preferentially to low-voltage-activated (LVA) channels. Using a holding potential of -90 mV, the following IC50 values were found (in micromolars): >1000 (CaV2.3), 957 (CaV1.3), 656 (CaV1.2), 219 (CaV3.2), and 132 (CaV3.1). Moreover, the isoindoline also promoted both accelerated inactivation kinetics of high-voltage-activated Ca2+ channels and a modest upregulation of CaV1.3 and CaV2.3. Additional data indicate that although MDIMP binds to the closed state of the channels, it has more preference for the inactivated one. Concerning CaV3.1, the compound did not alter the shape of the instantaneous current-voltage curve, and substituting one or two residues in the selectivity filter drastically increased the IC50 value, suggesting that MDIMP binds to the extracellular side of the pore. However, an outward current failed in removing the inhibition, which implies an alternative mechanism may be involved. The enantiomer (R)-MDIMP [methyl (R)-2-(1,3-dihydroisoindol-2-yl)-4-methylpentanoate], on the other hand, was synthesized and evaluated, but it did not improve the affinity to LVA channels. Implications of these findings are discussed in terms of the possible underlying mechanisms and pharmacological relevance. SIGNIFICANCE STATEMENT: We have studied the regulation of voltage-gated calcium channels by MDIMP, which disrupts excitation-contraction coupling in cardiac myocytes. The latter effect is more potent in atrial than ventricular myocytes, and this could be explained by our results showing that MDIMP preferentially blocks low-voltage-activated channels. Our data also provide mechanistic insights about the blockade and suggest that MDIMP is a promising member of the family of Ca2+ channel blockers, with possible application to the inhibition of subthreshold membrane depolarizations.
Collapse
Affiliation(s)
- Juan A M De La Rosa
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Maricela García-Castañeda
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Takuya Nishigaki
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Juan Carlos Gómora
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Mancilla-Percino
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guillermo Ávila
- Departamento de Bioquímica (J.A.M.D.L.R., M.G.-C., G.Á.) and Departamento de Química (T.M.-P.), Cinvestav-IPN, Mexico City, Mexico and Instituto de Biotecnología (T.N.) and Instituto de Fisiología Celular (J.C.G.), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Garcia AA, Rayevski A, Andrade-Jorge E, Trujillo-Ferrara JG. Structural and biological overview of Boron-containing amino acids in the medicinal chemistry field. Curr Med Chem 2018; 26:5077-5089. [PMID: 30259808 DOI: 10.2174/0929867325666180926150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Amino acids are the basic structural units of proteins as well as the precursors of many compounds with biological activity. The addition of boron reportedly induces changes in the chemical-biological profile of amino acids. METHODS We compiled information on the biological effect of some compounds and discuss the structure-activity relationship of the addition of boron. The specific focus presently is on borinic derivatives of α-amino acids, the specific changes in biological activity caused by the addition of a boron-containing moiety, and the identification of some attractive compounds for testing as potential new drugs. RESULTS Borinic derivatives of α-amino acids have been widely synthesized and tested as potential new therapeutic tools. The B-N (1.65 A°) or B-C (1.61 A°) or B-O (1.50 A°) bond is often key for the stability at different pHs and temperatures and activity of these compounds. The chemical features of synthesized derivatives, such as the specific moieties and the logP, polarizability and position of the boron atom are clearly linked to their pharmacodynamic and pharmacokinetic profiles. Some mechanisms of action have been suggested or demonstrated, while those responsible for other effects remain unknown. CONCLUSION The increasing number of synthetic borinic derivatives of α-amino acids as well as the recently reported crystal structures are providing new insights into the stability of these compounds at different pHs and temperatures, their interactions on drug targets, and the ring formation of five-membered heterocycles. Further research is required to clarify the ways to achieve specific synthesis, the mechanisms involved in the observed biological effect, and the toxicological profile of this type of boron-containing compounds (BCCs).
Collapse
Affiliation(s)
- Antonio Abad Garcia
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Alexey Rayevski
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukranie. 17 Generala Naumova St., 03164, Kyiv. Ukraine
| | - Erik Andrade-Jorge
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigacion. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Jose G Trujillo-Ferrara
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Mirón s/n, 11340, Mexico City. Mexico
| |
Collapse
|
4
|
Raunio J, Mannoja J, Nguyen T, Ahmad N, Kemppainen N, Franzén RG, Kandhavelu M, Candeias NR. Base catalysed N-functionalisation of boroxazolidones. RSC Adv 2017. [DOI: 10.1039/c7ra03266h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method for the condensation of boroxazolidones derived froml-valine with aromatic aldehydes, catalysed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene was developed.
Collapse
Affiliation(s)
- J. Raunio
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - J. Mannoja
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - T. Nguyen
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. Ahmad
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. M. Kemppainen
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - R. G. Franzén
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - M. Kandhavelu
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. R. Candeias
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| |
Collapse
|
5
|
Santamaria-Herrera MA, Ríos-Pérez EB, de la Rosa JAM, García-Castañeda M, Osornio-Garduño DS, Ramos-Mondragón R, Mancilla-Percino T, Avila G. MDIMP, a novel cardiac Ca(2+) channel blocker with atrial selectivity. Eur J Pharmacol 2016; 781:218-28. [PMID: 27089820 DOI: 10.1016/j.ejphar.2016.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
Abstract
In cardiac muscle cells both T-and L-type Ca(2+) channels (TTCCs and LTCCs, respectively) are expressed, and the latter are relevant to a process known as excitation-contraction coupling (ECC). Evidence obtained from docking studies suggests that isoindolines derived from α-amino acids bind to the LTCC CaV1.2. In the present study, we investigated whether methyl (S)-2-(1,3-dihydroisoindol-2-yl)-4-methylpentanoate (MDIMP), which is derived from L-leucine, modulates both Ca(2+) channels and ECC. To this end, mechanical properties, as well as Ca(2+) transients and currents, were all investigated in isolated cardiac myocytes. The effects of MDIMP on CaV1.2 (transiently expressed in 293T/17 cells) were also studied. In this system, evidence was found for an inhibitory action that develops and recovers in min, with an IC50 of 450µM. With respect to myocytes: atrial-TTCCs, atrial-LTCCs, and ventricular-LTCCs were also inhibited, in that order of potency. Accordingly, Ca(2+) transients, contractions, and window currents of LTCCs were all reduced more strongly in atrial cells. Interestingly, while the modulation of LTCCs was state-independent in these cells, it was state-dependent, and dual, on the ventricular ones. Furthermore, practically all of the ventricular LTCCs were closed at resting membrane potentials. This could explain their resistance to MDIMP, as they were affected in only open or inactivated states. All these features in turn explain the preferential down-regulation of the atrial ECC. Thus, our results support the view that isoindolines bind to Ca(2+) channels, improve our knowledge of the corresponding structure-function relationship, and may be relevant for conditions where decreased atrial activity is desired.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberto Ramos-Mondragón
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City, DF 07000, Mexico; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 2800 Plymouth Rd, 26-235N, Ann Arbor, MI 48109, USA
| | | | - Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City, DF 07000, Mexico.
| |
Collapse
|
6
|
Hofer A, Kovacs G, Zappatini A, Leuenberger M, Hediger MA, Lochner M. Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg Med Chem 2013; 21:3202-13. [PMID: 23602525 DOI: 10.1016/j.bmc.2013.03.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
2-Aminoethyl diphenylborinate (2-APB) is a known modulator of the IP3 receptor, the calcium ATPase SERCA, the calcium release-activated calcium channel Orai and TRP channels. More recently, it was shown that 2-APB is an efficient inhibitor of the epithelial calcium channel TRPV6 which is overexpressed in prostate cancer. We have conducted a structure-activity relationship study of 2-APB congeners to understand their inhibitory mode of action on TRPV6. Whereas modifying the aminoethyl moiety did not significantly change TRPV6 inhibition, substitution of the phenyl rings of 2-APB did. Our data show that the diaryl borinate moiety is required for biological activity and that the substitution pattern of the aryl rings can influence TRPV6 versus SOCE inhibition. We have also discovered that 2-APB is hydrolyzed and transesterified within minutes in solution.
Collapse
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Theoretical Characterization of Three 2,2-Diphenyl-1,3,2-oxazaborolidin-5-ones: Molecules with Fungicide Activities. MOLBANK 2009. [DOI: 10.3390/m600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Velasco B, Trujillo-Ferrara JG, Castillo LHF, Miranda R, Sánchez-Torres LE. In vitro apoptotic activity of 2,2-diphenyl-1,3,2-oxazaborolidin-5-ones in L5178Y cells. Life Sci 2007; 80:1007-13. [PMID: 17208255 DOI: 10.1016/j.lfs.2006.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/08/2006] [Accepted: 11/21/2006] [Indexed: 01/13/2023]
Abstract
Compounds containing B-N bonds have shown interesting biological activity. One class of such molecules is the 2,2-diphenyl-1,3,2-oxazaborolidin-5-ones (3a-j), which contain a B-N bond, have an alpha-amino acid moiety in the heterocycle, and have an exocyclic moiety related to an amino acid. The purpose of this work was to determine the inhibitory effects of 3a-j on the proliferation of murine L5178Y lymphoma cells. A new five-membered heterocyclic nucleus with apoptotic activity was found. The target products showed potent cytotoxicity in the L5178Y cell line. Among them, 3a exhibited the highest antineoplastic activity in L5178Y cells with an IC(50) value of 22.5+/-0.2 microM.
Collapse
Affiliation(s)
- Benjamín Velasco
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, México DF, México
| | | | | | | | | |
Collapse
|
9
|
Strang CJ, Henson E, Okamoto Y, Paz MA, Gallop PM. Separation and determination of alpha-amino acids by boroxazolidone formation. Anal Biochem 1989; 178:276-86. [PMID: 2751090 DOI: 10.1016/0003-2697(89)90639-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reaction of an alpha-amino acid (alpha-AA) with 1,1-diphenylborinic acid (DPBA) leads to the formation of a kinetically stable adduct at pH 2-5 in which both the alpha-amino and the alpha-carboxyl groups are bound to boron forming a cyclic mixed anhydride termed a boroxazolidone. In this adduct, the greater than N:B bond is coordinate, involving the free electron pair of nitrogen, thereby satisfying the octet rule for the second electron shell of boron (Group IIIA). Consequently, the alpha-amino function of the boroxazolidone can be primary, secondary, or tertiary, as demonstrated by boroxazolidone formation with glycine, N-methylglycine, and N,N-dimethylglycine. On reaction with DPBA, the alpha-AA moiety of N-terminal gamma-glutamyl peptides is also derivatized as demonstrated by the formation of a glutathione boroxazolidone. The 1,1-diphenylboroxazolidone adducts of alpha-AA may be separated by reversed-phase (RP)-HPLC (AA-DPBA/RP-HPLC) enabling the derivatization procedure to be used as a precolumn reaction for alpha-AA analysis. Under the conditions we describe here, DPBA is not stably reactive with the epsilon-amino group of lysine. Furthermore, it does not complex with amide bonds of the peptide backbone or to any side chains of the common amino acids. Reaction of an alpha-AA mixture with DPBA, followed by RP-HPLC (AA-DPBA/RP-HPLC) is then a simple method by which to analyze alpha-AA in a mixture with peptides and amines. Precolumn reaction with DPBA may be used to separate peptides from alpha-AA and from those peptides which contain an alpha-AA moiety. Unreacted peptides are bound only weakly to the HPLC column and thus are separated from reacted alpha-amino acids which are retained as 1,1-diphenylboroxazolidones until their selective elution. This method is particularly suited for the analysis of alpha-amino acids that are derived from post-translational modification of protein side chains.
Collapse
Affiliation(s)
- C J Strang
- Laboratory of Human Biochemistry, Children's Hospital, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|