1
|
Salles A, Loscalzo E, Montoya J, Mendoza R, Boergens KM, Moss CF. Auditory processing of communication calls in interacting bats. iScience 2024; 27:109872. [PMID: 38827399 PMCID: PMC11141141 DOI: 10.1016/j.isci.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
There is strong evidence that social context plays a role in the processing of acoustic signals. Yet, the circuits and mechanisms that govern this process are still not fully understood. The insectivorous big brown bat, Eptesicus fuscus, emits a wide array of communication calls, including food-claiming calls, aggressive calls, and appeasement calls. We implemented a competitive foraging task to explore the influence of behavioral context on auditory midbrain responses to conspecific social calls. We recorded neural population responses from the inferior colliculus (IC) of freely interacting bats and analyzed data with respect to social context. Analysis of our neural recordings from the IC shows stronger population responses to individual calls during social events. For the first time, neural recordings from the IC of a copulating bat were obtained. Our results indicate that social context enhances neuronal population responses to social vocalizations in the bat IC.
Collapse
Affiliation(s)
- Angeles Salles
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emely Loscalzo
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica Montoya
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Rosa Mendoza
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kevin M. Boergens
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Ito T, Ono M, Ohmori H. Convergence of bilateral auditory midbrain inputs on neurons in the auditory thalamus of chicken. J Comp Neurol 2022; 531:170-185. [PMID: 36215105 DOI: 10.1002/cne.25422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
In the avian ascending auditory pathway, the nucleus mesencephalicus lateralis pars dorsalis (MLd; the auditory midbrain center) receives inputs from virtually all lower brainstem auditory nuclei and sends outputs bilaterally to the nucleus ovoidalis (Ov; the auditory thalamic nucleus). Axons from part of the MLd terminate in a particular domain of Ov, thereby suggesting a formation of segregated pathways point-to-point from lower brainstem nuclei via MLd to the thalamus. However, it has not yet been demonstrated whether any spatial clustering of thalamic neurons that receive inputs from specific domains of MLd exists. Ov neurons receive input from bilateral MLds; however, the degree of laterality has not been reported yet. In this study, we injected a recombinant avian adeno-associated virus, a transsynaptic anterograde vector into the MLd of the chick, and analyzed the distribution of labeled postsynaptic neurons on both sides of the Ov. We found that fluorescent protein-labeled neurons on both sides of the Ov were clustered in domains corresponding to subregions of the MLd. The laterality of projections was calculated as the ratio of neurons labeled by comparing ipsilateral to contralateral projections from the MLd, and it was 1.86 on average, thereby indicating a slight ipsilateral projection dominance. Bilateral inputs from different subdomains of the MLd converged on several single Ov neurons, thereby implying a possibility of a de novo binaural processing of the auditory information in the Ov.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Harunori Ohmori
- Department of Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Pätz C, Console-Meyer L, Felmy F. Structural arrangement of auditory brainstem nuclei in the bats Phyllostomus discolor and Carollia perspicillata. J Comp Neurol 2022; 530:2762-2781. [PMID: 35703441 DOI: 10.1002/cne.25355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
The structure of the mammalian auditory brainstem is evolutionarily highly plastic, and distinct nuclei arrange in a species-dependent manner. Such anatomical variability is present in the superior olivary complex (SOC) and the nuclei of the lateral lemniscus (LL). Due to the structure-function relationship in the auditory brainstem, the identification of individual nuclei supports the understanding of sound processing. Here, we comparatively describe the nucleus arrangement and the expression of functional markers in the auditory brainstem of the two bat species Phyllostomus discolor and Carollia perspicillata. Using immunofluorescent labeling, we describe the arrangement and identity of the SOC and LL nuclei based on the expression of synaptic markers (vesicular glutamate transporter 1 and glycine transporter 2), calcium-binding proteins, as well as the voltage-gated ion channel subunits Kv1.1 and HCN1. The distribution of excitatory and inhibitory synaptic labeling appears similar between both species and matches with that of other mammals. The detection of calcium-binding proteins indicates species-dependent differences and deviations from other mammals. Kv1.1 and HCN1 show largely the same expression pattern in both species, which diverges from other mammals, indicating functional adaptations in the cellular physiology of bat neurons.
Collapse
Affiliation(s)
- Christina Pätz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Console-Meyer
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Radtke-Schuller S, Fenzl T, Peremans H, Schuller G, Firzlaff U. Cyto- and myeloarchitectural brain atlas of the pale spear-nosed bat (Phyllostomus discolor) in CT Aided Stereotaxic Coordinates. Brain Struct Funct 2020; 225:2509-2520. [PMID: 32936343 PMCID: PMC7544721 DOI: 10.1007/s00429-020-02138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Abstract
The pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, at intervals of 350 µm. To facilitate comparisons with other species, brain structures were named according to the widely accepted Paxinos nomenclature and previous neuroanatomical studies of other bat species. Outlines of auditory cortical fields, as defined in earlier studies, were mapped onto atlas sections and onto the brain surface, together with the architectonic subdivisions of the neocortex. X-ray computerized tomography (CT) of the bat's head was used to establish the relationship between coordinates of brain structures and the skull. We used profile lines and the occipital crest as skull landmarks to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas. An electronic version of the atlas plates and supplementary material is available from https://doi.org/10.12751/g-node.8bbcxy.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany.
- Department of Psychiatry, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Thomas Fenzl
- Klinikum für Anästhesiologie und Intensivmedizin am Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Gerd Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany
| |
Collapse
|
5
|
Ito T, Yamamoto R, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Honma S. Three forebrain structures directly inform the auditory midbrain of echolocating bats. Neurosci Lett 2019; 712:134481. [PMID: 31494222 DOI: 10.1016/j.neulet.2019.134481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Echolocating bats emit various types of vocalizations for navigation and communication, and need to pay attention to vocal sounds. Projections from forebrain centers to auditory centers are involved in the attention to vocalizations, with the inferior colliculus (IC) being the main target of the projections. Here, using a retrograde tracer, we demonstrate that three forebrain structures, namely, the medial prefrontal cortex (mPFC), amygdala, and auditory cortex (AC), send direct descending projections to the central nucleus of IC. We found that all three structures projected to the bilateral IC. A comparison of the patterns of retrogradely labeled cells across animals suggests that the ipsilateral AC-IC projection is topographically organized, whereas mPFC-IC or amygdala-IC projections did not show clear topographic organization. Together with evidence from previous studies, these results suggest that three descending projections to the IC form loops between the forebrain and IC to make attention to various vocal sounds.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Satoru Honma
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
6
|
Ono M, Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J Exp Neurosci 2018; 12:1179069518818230. [PMID: 30559596 PMCID: PMC6291857 DOI: 10.1177/1179069518818230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
The auditory midbrain is the critical integration center in the auditory pathway of vertebrates. Synaptic inhibition plays a key role during information processing in the auditory midbrain, and these inhibitory neural circuits are seen in all vertebrates and are likely essential for hearing. Here, we review the structure and function of the inhibitory neural circuits of the auditory midbrain. First, we provide an overview on how these inhibitory circuits are organized within different clades of vertebrates. Next, we focus on recent findings in the mammalian auditory midbrain, the most studied of the vertebrates, and discuss how the mammalian auditory midbrain is functionally coordinated.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Tetsufumi Ito
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
7
|
Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Riquimaroux H. Organization of subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) identified with cytoarchitecture and molecular expression. J Comp Neurol 2018; 526:2824-2844. [PMID: 30168138 DOI: 10.1002/cne.24529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/09/2022]
Abstract
The auditory system of echolocating bats shows remarkable specialization likely related to analyzing echoes of sonar pulses. However, significant interspecies differences have been observed in the organization of auditory pathways among echolocating bats, and the homology of auditory nuclei with those of non-echolocating species has not been established. Here, in order to establish the homology and specialization of auditory pathways in echolocating bats, the expression of markers for glutamatergic, GABAergic, and glycinergic phenotypes in the subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) was evaluated. In the superior olivary complex, we identified the medial superior olive and superior paraolivary nuclei as expressing glutamatergic and GABAergic phenotypes, respectively, suggesting these nuclei are homologous with those of rodents. In the nuclei of the lateral lemniscus (NLL), the dorsal nucleus was found to be purely GABAergic, the intermediate nucleus was a mixture of glutamatergic and inhibitory neurons, the compact part of the ventral nucleus was purely glycinergic, and the multipolar part of the ventral nucleus expressed both GABA and glycine. In the inferior colliculus (IC), the central nucleus was found to be further subdivided into dorsal and ventral parts according to differences in the density of terminals and the morphology of large GABAergic neurons, suggesting specialization to sonar pulse structure. Medial geniculate virtually lacked GABAergic neurons, suggesting that the organization of the tectothalamic pathway is similar with that of rodents. Taken together, our findings revealed that specialization primarily occurs with regard to nuclei size and organization of the NLL and IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, Japan
| | - Takafumi Furuyama
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | | |
Collapse
|
8
|
Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S. Organization of projection from brainstem auditory nuclei to the inferior colliculus of Japanese house bat (Pipistrellus abramus). Brain Behav 2018; 8:e01059. [PMID: 29999234 PMCID: PMC6085899 DOI: 10.1002/brb3.1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Echolocating bats show remarkable specialization which is related to analysis of echoes of biosonars in subcortical auditory brainstem pathways. The inferior colliculus (IC) receives inputs from all lower brainstem auditory nuclei, i.e., cochlear nuclei, nuclei of the lateral lemniscus, and superior olivary complex, and create de novo responses to sound, which is considered crucial for echolocation. Inside the central nucleus of the IC (ICC), small domains which receive specific combination of extrinsic inputs are the basis of integration of sound information. In addition to extrinsic inputs, each domain is interconnected by local IC neurons but the cell types related to the interconnection are not well-understood. The primary objective of the current study is to examine whether the ascending inputs are reorganized and terminate in microdomains inside the ICC. METHODS We made injection of a retrograde tracer into different parts of the ICC, and analyzed distribution of retrogradely labeled cells in the auditory brainstem of Japanese house bat (Pipistrellus abramus). RESULTS Pattern of ascending projections from brainstem nuclei was similar to other bat species. Percentages of labeled cells in several nuclei were correlated each other. Furthermore, within the IC, we identified that large GABAergic (LG) and glutamatergic neurons made long-range connection. CONCLUSIONS Synaptic organization of IC of Japanese house bat shows specialization which is likely to relate for echolocation. Input nuclei to the IC make clusters which terminate in specific part of the ICC, implying the presence of microdomains. LG neurons have roles for binding IC microdomains.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| | - Takafumi Furuyama
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|