1
|
Ekerdt C, Menks WM, Fernández G, McQueen JM, Takashima A, Janzen G. White matter connectivity linked to novel word learning in children. Brain Struct Funct 2024; 229:2461-2477. [PMID: 39325144 PMCID: PMC11612013 DOI: 10.1007/s00429-024-02857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14-16 years) activated more left frontal and parietal regions, the Young group (aged 8-10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.
Collapse
Affiliation(s)
- Clara Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Willeke M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - James M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Atsuko Takashima
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gabriele Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Wang J, Turesky T, Loh M, Barber J, Hue V, Escalante E, Medina A, Zuk J, Gaab N. Lateralization of activation within the superior temporal gyrus during speech perception in sleeping infants is associated with subsequent language skills in kindergarten: A passive listening task-fMRI study. BRAIN AND LANGUAGE 2024; 257:105461. [PMID: 39278185 DOI: 10.1016/j.bandl.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Brain asymmetries are hypothesized to reduce functional duplication and thus have evolutionary advantages. The goal of this study was to examine whether early brain lateralization contributes to skill development within the speech-language domain. To achieve this goal, 25 infants (2-13 months old) underwent behavioral language examination and fMRI during sleep while listening to forward and backward speech, and then were assessed on various language skills at 55-69 months old. We observed that infant functional lateralization of the superior temporal gyrus (STG) for forward > backward speech was associated with phonological, vocabulary, and expressive language skills 4 to 5 years later. However, we failed to observe that infant language skills or the anatomical lateralization of STG were related to subsequent language skills. Overall, our findings suggest that infant functional lateralization of STG for speech perception may scaffold subsequent language acquisition, supporting the hypothesis that functional hemisphere asymmetries are advantageous.
Collapse
Affiliation(s)
- Jin Wang
- School of Education and Information Studies, University of California, Los Angeles, CA, USA.
| | - Ted Turesky
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Megan Loh
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Ja'Kala Barber
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Victoria Hue
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | | | - Adrian Medina
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Jennifer Zuk
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA, USA
| | - Nadine Gaab
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Quin-Conroy JE, Thompson PA, Bayliss DM, Badcock NA. Generalized models for estimating cerebral lateralisation of young children using functional transcranial Doppler ultrasound. Hum Brain Mapp 2024; 45:e70012. [PMID: 39230061 PMCID: PMC11372819 DOI: 10.1002/hbm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Thompson et al., 2023 (Generalized models for quantifying laterality using functional transcranial Doppler ultrasound. Human Brain Mapping, 44(1), 35-48) introduced generalised model-based analysis methods for determining cerebral lateralisation from functional transcranial Doppler ultrasound (fTCD) data which substantially decreased the uncertainty of individual lateralisation estimates across several large adult samples. We aimed to assess the suitability of these methods for increasing precision in lateralisation estimates for child fTCD data. We applied these methods to adult fTCD data to establish the validity of two child-friendly language and visuospatial tasks. We also applied the methods to fTCD data from 4- to 7-year-old children. For both samples, the laterality estimates from the complex generalised additive model (GAM) approach correlated strongly with the traditional methods while also decreasing individual standard errors compared to the popular period-of-interest averaging method. We recommend future research using fTCD with young children consider using GAMs to reduce the noise in their LI estimates.
Collapse
Affiliation(s)
- Josephine E Quin-Conroy
- School of Psychological Science, University of Western Australia, Western Australia, Australia
| | - Paul A Thompson
- School of Education, Learning and Communication Sciences, University of Warwick, Coventry, UK
| | - Donna M Bayliss
- School of Psychological Science, University of Western Australia, Western Australia, Australia
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, Western Australia, Australia
| |
Collapse
|
4
|
Day TKM, Hermosillo R, Conan G, Randolph A, Perrone A, Earl E, Byington N, Hendrickson TJ, Elison JT, Fair DA, Feczko E. Multi-level fMRI analysis applied to hemispheric specialization in the language network, functional areas, and their behavioral correlations in the ABCD sample. Dev Cogn Neurosci 2024; 66:101355. [PMID: 38354531 PMCID: PMC10875197 DOI: 10.1016/j.dcn.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.
Collapse
Affiliation(s)
- Trevor K M Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Robert Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Prat CS, Gallée J, Yamasaki BL. Getting language right: Relating individual differences in right hemisphere contributions to language learning and relearning. BRAIN AND LANGUAGE 2023; 239:105242. [PMID: 36931111 DOI: 10.1016/j.bandl.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Language, or the diverse set of dynamic processes through which symbolic, perceptual codes are linked to meaning representations in memory, has long been assumed to be lateralized to the left hemisphere (LH). However, after over 150 years of investigation, we still lack a unifying account of when, and for whom, a particular linguistic process relies upon LH or right hemisphere (RH) computations, or both. With a focus on individual differences, this article integrates existing theories of hemispheric contributions to language and cognition into a novel proposed framework for understanding how, when, and for whom the RH contributes to linguistic processes. We use evidence from first and second language learning and language relearning following focal brain damage to highlight the critical contributions of the RH.
Collapse
Affiliation(s)
- Chantel S Prat
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA.
| | - Jeanne Gallée
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Wu H, Peng D, Yan H, Yang Y, Xu M, Zeng W, Chang C, Wang N. Occupation-modulated language networks and its lateralization: A resting-state fMRI study of seafarers. Front Hum Neurosci 2023; 17:1095413. [PMID: 36992794 PMCID: PMC10040660 DOI: 10.3389/fnhum.2023.1095413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionStudies have revealed that the language network of Broca’s area and Wernicke’s area is modulated by factors such as disease, gender, aging, and handedness. However, how occupational factors modulate the language network remains unclear.MethodsIn this study, taking professional seafarers as an example, we explored the resting-state functional connectivity (RSFC) of the language network with seeds (the original and flipped Broca’s area and Wernicke’s area).ResultsThe results showed seafarers had weakened RSFC of Broca’s area with the left superior/middle frontal gyrus and left precentral gyrus, and enhanced RSFC of Wernicke’s area with the cingulate and precuneus. Further, seafarers had a less right-lateralized RSFC with Broca’s area in the left inferior frontal gyrus, while the controls showed a left-lateralized RSFC pattern in Broca’s area and a right-lateralized one in Wernicke’s area. Moreover, seafarers displayed stronger RSFC with the left seeds of Broca’s area and Wernicke’s area.DiscussionThese findings suggest that years of working experience significantly modulates the RSFC of language networks and their lateralization, providing rich insights into language networks and occupational neuroplasticity.
Collapse
Affiliation(s)
- Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Deyuan Peng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
- Hongjie Yan,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Chunqi Chang,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- *Correspondence: Nizhuan Wang,
| |
Collapse
|
7
|
Bartha-Doering L, Kollndorfer K, Schwartz E, Fischmeister FP, Langs G, Weber M, Lackner-Schmelz S, Kienast P, Stümpflen M, Taymourtash A, Mandl S, Alexopoulos J, Prayer D, Seidl R, Kasprian G. Fetal temporal sulcus depth asymmetry has prognostic value for language development. Commun Biol 2023; 6:109. [PMID: 36707693 PMCID: PMC9883513 DOI: 10.1038/s42003-023-04503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
In most humans, the superior temporal sulcus (STS) shows a rightward depth asymmetry. This asymmetry can not only be observed in adults, but is already recognizable in the fetal brain. As the STS lies adjacent to brain areas important for language, STS depth asymmetry may represent an anatomical marker for language abilities. This study investigated the prognostic value of STS depth asymmetry in healthy fetuses for later language abilities, language localization, and language-related white matter tracts. Less right lateralization of the fetal STS depth was significantly associated with better verbal abilities, with fetal STS depth asymmetry explaining more than 40% of variance in verbal skills 6-13 years later. Furthermore, less right fetal STS depth asymmetry correlated with increased left language localization during childhood. We hypothesize that earlier and/or more localized fetal development of the left temporal cortex is accompanied by an earlier development of the left STS and is favorable for early language learning. If the findings of this pilot study hold true in larger samples of healthy children and in different clinical populations, fetal STS asymmetry has the potential to become a diagnostic biomarker of the maturity and integrity of neural correlates of language.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Kathrin Kollndorfer
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- grid.22937.3d0000 0000 9259 8492Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian Ph.S. Fischmeister
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria ,grid.5110.50000000121539003Institute of Psychology, University of Graz, Graz, Austria ,grid.452216.6BioTechMed-Graz, Graz, Austria
| | - Georg Langs
- grid.22937.3d0000 0000 9259 8492Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sonja Lackner-Schmelz
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Patric Kienast
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Stümpflen
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Athena Taymourtash
- grid.22937.3d0000 0000 9259 8492Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sophie Mandl
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johanna Alexopoulos
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- grid.22937.3d0000 0000 9259 8492Division of Neuroradiology and Muscoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Lateral Bias in Visual Working Memory. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate functional cerebral asymmetries of visual working memory (VWM) in relation to language lateralization. The bilateral change detection paradigm with capital letters as stimuli and the translingual lexical decision task were used to assess VWM and language asymmetry, respectively, in a sample of 99 younger healthy participants (59 women). Participant attention was cued towards right or left visual half-field. For the VWM task, men and women were more accurate and faster when stimuli were presented in the right visual half-field compared to the left visual half-field. As expected, a significant right visual half-field advantage was demonstrated in the lexical decision task in performance accuracy (but not response time). The results also revealed no relationship between lateralization in VWM and lexical decision. VWM performance accuracy decreased significantly with increasing asymmetry. This relationship was significant for women, but not men. Taken together, the present study demonstrates that the lateral bias in visual working memory is independent from language lateralization, and less lateralized individuals perform better than individuals with larger asymmetries in both visual half-field tasks.
Collapse
|
9
|
Herta J, Winter F, Pataraia E, Feucht M, Czech T, Porsche B, Leiss U, Slavc I, Peyrl A, Kasprian G, Rössler K, Dorfer C. Awake brain surgery for language mapping in pediatric patients: a single-center experience. J Neurosurg Pediatr 2022:1-11. [PMID: 35276657 DOI: 10.3171/2022.1.peds21569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to evaluate the feasibility, benefit, and safety of awake brain surgery (ABS) and intraoperative language mapping in children and adolescents with structural epilepsies. Whereas ABS is an established method to monitor language function in adults intraoperatively, reports of ABS in children are scarce. METHODS A retrospective chart review of pediatric patients ≤ 18 years of age who underwent ABS and cortical language mapping for supratentorial tumors and nontumoral epileptogenic lesions between 2008 and 2019 was conducted. The authors evaluated the global intellectual and specific language performance by using detailed neuropsychological testing, the patient's intraoperative compliance, results of intraoperative language mapping assisted by electrocorticography (ECoG), and postsurgical language development and seizure outcomes. Descriptive statistics were used for this study, with a statistical significance of p < 0.05. RESULTS Eleven children (7 boys) with a median age of 13 years (range 10-18 years) underwent ABS for a lesion in close vicinity to cortical language areas as defined by structural and functional MRI (left hemisphere in 9 children, right hemisphere in 2). Patients were neurologically intact but experiencing seizures; these were refractory to therapy in 9 patients. Compliance during the awake phase was high in 10 patients and low in 1 patient. Cortical mapping identified eloquent language areas in 6/10 (60%) patients and was concordant in 3/8 (37.5%), discordant in 3/8 (37.5%), and unclear in 2/8 (25%) patients compared to preoperative functional MRI. Stimulation-induced seizures occurred in 2 patients and could be interrupted easily. ECoG revealed that afterdischarge potentials (ADP) were involved in 5/9 (56%) patients with speech disturbances during stimulation. None of these patients harbored postoperative language dysfunction. Gross-total resection was achieved in 10/11 (91%) patients, and all were seizure free after a median follow-up of 4.3 years. Neuropsychological testing using the Wechsler Intelligence Scale for Children and the verbal learning and memory test showed an overall nonsignificant trend toward an immediate postoperative deterioration followed by an improvement to above preoperative levels after 1 year. CONCLUSIONS ABS is a valuable technique in selected pediatric patients with lesions in language areas. An interdisciplinary approach, careful patient selection, extensive preoperative training of patients, and interpretation of intraoperative ADP are pivotal to a successful surgery.
Collapse
|
10
|
EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Much evidence shows that music training influences the development of functional brain organization and cerebral asymmetry in an auditory-motor integrative neural system also associated with language and speech. Such overlap suggests that music training could be used for interventions in disadvantaged populations. Accordingly, we investigated neurofunctional changes associated with the influence of socially based classical ensemble music (CEM) training on executive auditory functions of children from low socioeconomic status (LSES), as compared to untrained counterparts. We conducted a novel ROI-focused reanalysis of stimulus-locked event-related electroencephalographic (EEG) band power data previously recorded from fifteen LSES children (9–10 years), with and without CEM, while performing a series of auditory Go/No-Go trials (involving 1100 Hz or 2000 Hz tones). An analysis of collapsed Alpha2, Beta1, Beta2, Delta, and Theta EEG bands showed significant differences in increased and decreased left asymmetry between the CEM and the Comparison group in key frontal and central electrodes typically associated with learning music. Overall, in Go trials, the CEM group responded more quickly and accurately. Linear regression analyses revealed both positive and negative correlations between left hemispheric asymmetry and behavioral measures of PPVT score, auditory sensitivity, Go accuracy, and reaction times. The pattern of results suggests that tone frequency and EEG asymmetries may be attributable to a shift to left lateralization as a byproduct of CEM. Our findings suggest that left hemispheric laterality associated with ensemble music training may improve the efficiency of productive language processing and, accordingly, may be considered as a supportive intervention for LSES children and youth.
Collapse
|
11
|
Noufi T, Zeev-Wolf M. Activating the Right Hemisphere Through Left-Hand Muscle Contraction Improves Novel Metaphor Comprehension. Front Psychol 2021; 12:729814. [PMID: 34744897 PMCID: PMC8570339 DOI: 10.3389/fpsyg.2021.729814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
The neurotypical brain is characterized by left hemisphere lateralization for most language processing. However, the right hemisphere plays a crucial part when it is required to bring together seemingly unrelated concepts into meaningful expressions, such as in the case of novel metaphors (unfamiliar figurative expressions). The aim of the current study was to test whether it is possible to enhance novel metaphor comprehension through an easy, efficient, and non-invasive method – intentional contraction of the left hand’s muscles, to activate the motor and sensory areas in the contralateral hemisphere. One hundred eighteen neurotypical participants were asked to perform a semantic judgment task involving two-word expressions of four types: literal, conventional metaphors, novel metaphors, or unrelated, while squeezing a rubber ball with their right hand, left hand, or not at all. Results demonstrated that left-hand contraction improved novel metaphor comprehension, as participants were more accurate and quicker in judging them to be meaningful. The findings of the present work provide a simple and efficient method for boosting right hemisphere activation, which can be used to improve metaphoric language comprehension. This method can aid several populations in which right hemisphere function is not fully established, and who struggle with processing figurative language, such as adolescents and individuals on the autistic spectrum.
Collapse
Affiliation(s)
- Tala Noufi
- Department of Education, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maor Zeev-Wolf
- Department of Education, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
12
|
Raja R, Na X, Glasier CM, Badger TM, Bellando J, Ou X. Associations between Cortical Asymmetry and Domain Specific Cognitive Functions in Healthy Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3127-3132. [PMID: 34891904 PMCID: PMC9179091 DOI: 10.1109/embc46164.2021.9630831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cortical asymmetry and functional lateralization form intriguing and fundamental features of human brain organization, and is complicated by individual differences and evolvement with age. While many studies have investigated neuroanatomical differences between hemispheres as well as functional lateralization of the brain for different age groups, few have looked into the associations between cortical asymmetry and development of cognitive functions in children. In this study, we aimed to identify relationships between hemispheric asymmetry in brain cortex measured by MRI and cognitive development in healthy young children evaluated by a comprehensive battery of neuropsychological tests. Structural MRI data were obtained from 71 children in the age range of 7.5 to 8.5 years. Structural lateralization index (SLI), a reflection of the brain asymmetry, was computed for each of the 3 cortical morphometry measurements: cortical thickness, surface area and gray matter volume. A total of 34 bilateral regions were studied for the whole brain cortex as defined by the Desikan atlas. Region-wise SLI was correlated with domain specific cognitive scores using partial correlation analysis controlled for the potential confounding effects of age and sex. Significant correlations were identified between test scores of multiple cognitive domains and SLI of several cortical regions. Specifically, SLI of total surface area of precuneus and insula significantly correlated with measures of executive function behavior; significant relationships were also found between SLI of mean cortical thickness of superior parietal cortex and memory and language tests scores; in addition, SLI of parahippocampal gyrus also showed significant correlations with language test scores for all 3 morphometry features. These findings revealed regional hemispheric asymmetries that may be linked to specific cognitive abilities in children.Clinical relevance- This study shows associations between structural lateralization in different brain cortical regions and variations in specific cognitive functions in healthy children.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Thomas M. Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| |
Collapse
|
13
|
Gonzalez MR, Baaré WFC, Hagler DJ, Archibald S, Vestergaard M, Madsen KS. Brain structure associations with phonemic and semantic fluency in typically-developing children. Dev Cogn Neurosci 2021; 50:100982. [PMID: 34171560 PMCID: PMC8242963 DOI: 10.1016/j.dcn.2021.100982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022] Open
Abstract
Verbal fluency is the ability to retrieve lexical knowledge quickly and efficiently and develops during childhood and adolescence. Few studies have investigated associations between verbal fluency performance and brain structural variation in children. Here we examined associations of verbal fluency performance with structural measures of frontal and temporal language-related brain regions and their connections in 73 typically-developing children aged 7-13 years. Tract-based spatial statistics was used to extract fractional anisotropy (FA) from the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF), and the white matter underlying frontal and temporal language-related regions. FreeSurfer was used to extract cortical thickness and surface area. Better semantic and phonemic fluency performance was associated with higher right SLF/AF FA, and phonemic fluency was also modestly associated with lower left SLF/AF FA. Explorative voxelwise analyses for semantic fluency suggested associations with FA in other fiber tracts, including corpus callosum and right inferior fronto-occipital fasciculus. Overall, our results suggest that verbal fluency performance in children may rely on right hemisphere structures, possibly involving both language and executive function networks, and less on solely left hemisphere structures as often is observed in adults. Longitudinal studies are needed to clarify whether these associations are mediated by maturational processes, stable characteristics and/or experience.
Collapse
Affiliation(s)
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark.
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.
| | - Sarah Archibald
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA.
| | - Martin Vestergaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Department of Child and Adolescent Psychiatry, Psychiatry Region Zealand, Ny Østergade 12, DK-4000, Roskilde, Denmark.
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Sigurdsgade 26, DK-2200, Copenhagen N., Denmark.
| |
Collapse
|
14
|
Mariana B, Carolina L, Valeria A, Bautista EA, Silvia K, Lucía AF. Functional anatomy of idiomatic expressions. Brain Topogr 2021; 34:489-503. [PMID: 33948754 DOI: 10.1007/s10548-021-00843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Idiomatic expressions (IE) are groups of words whose meaning is different from the sum of its components. Neural mechanisms underlying their processing are still debated, especially regarding lateralization, main structures involved, and whether this neural network is independent from the spoken language. To investigate the neural correlates of IE processing in healthy Spanish speakers.Twenty one native speakers of Spanish were asked to select one of 4 possible meanings for IE or literal sentences. fMRI scans were performed in a 3.0T scanner and processed by SPM 12 comparing IE vs. literal sentences. Laterality indices were calculated at the group level. IE activated a bilateral, slightly right-sided network comprising the pars triangularis and areas 9 and 10. In the left hemisphere (LH): the pars orbitalis, superior frontal, angular and fusiform gyrus. In the right hemisphere (RH): anterior insula, middle frontal, and superior temporal gyrus. This network reveals the importance of the RH, besides traditional LH areas, to comprehend IE. This agrees with the semantic coding model: the LH activates narrow semantic fields choosing one single meaning and ignoring others, and the RH detects distant semantic relationships, activating diffuse semantic fields. It is also in line with the configuration hypothesis: both meanings, literal and figurative, are executed simultaneously, until the literal meaning is definitively rejected and the figurative one is accepted. Processing IE requires the activation of fronto-temporal networks in both hemispheres. The results concur with previous studies in other languages, so these networks are independent from the spoken language. Understanding these mechanisms sheds light on IE processing difficulties in different clinical populations and must be considered when planning resective surgery.
Collapse
Affiliation(s)
- Bendersky Mariana
- Living Anatomy Laboratory, 3rd Normal Anatomy Department, School of Medicine, Buenos Aires University, Paraguay 2155, Buenos Aires, Argentina. .,ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.
| | - Lomlomdjian Carolina
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Department of Neurology, Hospital Austral, Pilar, Argentina
| | - Abusamra Valeria
- School of Philosophy and Literature, National Scientific and Technical Research Council-Argentina (CONICET), Buenos Aires University, Puan 480, Buenos Aires, Argentina
| | - Elizalde Acevedo Bautista
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Faculty of Biomedical Science, Austral University, Mariano Acosta 1611, Pilar, Buenos Aires, Argentina.,IIMT (Instituto de Investigaciones en Medicina Traslacional), CONICET-Austral University, Derqui-Pilar, Buenos Aires, Argentina
| | - Kochen Silvia
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina
| | - Alba-Ferrara Lucía
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Faculty of Biomedical Science, Austral University, Mariano Acosta 1611, Pilar, Buenos Aires, Argentina
| |
Collapse
|
15
|
Effect of corpus callosum agenesis on the language network in children and adolescents. Brain Struct Funct 2021; 226:701-713. [PMID: 33496825 PMCID: PMC7981296 DOI: 10.1007/s00429-020-02203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
The present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.
Collapse
|
16
|
Bartha-Doering L, Kollndorfer K, Schwartz E, Fischmeister FPS, Alexopoulos J, Langs G, Prayer D, Kasprian G, Seidl R. The role of the corpus callosum in language network connectivity in children. Dev Sci 2020; 24:e13031. [PMID: 32790079 PMCID: PMC7988581 DOI: 10.1111/desc.13031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6–12, we performed task‐based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid‐posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Kathrin Kollndorfer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Hashimoto T, Higuchi H, Uno A, Yokota S, Asano K, Taki Y, Kawashima R. Association Between Resting-State Functional Connectivity and Reading in Two Writing Systems in Japanese Children With and Without Developmental Dyslexia. Brain Connect 2020; 10:254-266. [PMID: 32567365 PMCID: PMC7465633 DOI: 10.1089/brain.2020.0759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction: Japanese is unique, as it features two distinct writing systems that share the same sound and meaning: syllabic Hiragana and logographic Kanji scripts. Acquired reading difficulties in Hiragana and Kanji have been examined in older patients with brain lesions. However, the precise mechanisms underlying deficits in developmental dyslexia (DD) remain unclear. Materials and Methods: The neural signatures of Japanese children with DD were examined by using resting-state functional magnetic resonance imaging. We examined 22 dyslexic and 46 typically developing (TD) children, aged 7–14 years. Results: Reading performance in each writing system was correlated with neural connectivity in TD children. In contrast, in children with DD, weak associations between neural connectivity and reading performance were observed. In TD children, Hiragana-reading fluency was positively correlated with the left fusiform gyrus network. No significant correlations between Hiragana fluency and neural connectivity were observed in children with DD. Correspondingly, there were fewer correlations between Kanji accuracy and strength of reading-related connectivity in children with DD, whereas positive correlations with the bilateral fronto-parietal network and negative correlations with the left fusiform network were found in TD children. Discussion: These data suggest that positive and negative coupling with neural connectivity is associated with developing Japanese reading skills. Further, different neural connectivity correlations between Hiragana fluency and Kanji accuracy were detected in TD children but less in children with DD. Conclusion: The two writing systems may exert differential effects and deficits on reading in healthy children and in children with DD, respectively.
Collapse
Affiliation(s)
- Teruo Hashimoto
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroki Higuchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akira Uno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Susumu Yokota
- Faculty of Art and Science, Kyushu University, Fukuoka, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Bradshaw AR, Woodhead ZVJ, Thompson PA, Bishop DVM. Investigation into inconsistent lateralisation of language functions as a potential risk factor for language impairment. Eur J Neurosci 2019; 51:1106-1121. [PMID: 31738452 PMCID: PMC7078955 DOI: 10.1111/ejn.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Disruption to language lateralisation has been proposed as a cause of developmental language impairments. In this study, we tested the idea that consistency of lateralisation across different language functions is associated with language ability. A large sample of adults with variable language abilities (N = 67 with a developmental disorder affecting language and N = 37 controls) were recruited. Lateralisation was measured using functional transcranial Doppler sonography (fTCD) for three language tasks that engage different language subprocesses (phonological decision, semantic decision and sentence generation). The whole sample was divided into those with consistent versus inconsistent lateralisation across the three tasks. Language ability (using a battery of standardised tests) was compared between the consistent and inconsistent groups. The results did not show a significant effect of lateralisation consistency on language skills. However, of the 31 individuals showing inconsistent lateralisation, the vast majority (84%) were in the disorder group with only five controls showing such a pattern, a difference that was higher than would be expected by chance. The developmental disorder group also demonstrated weaker correlations between laterality indices across pairs of tasks. In summary, although the data did not support the hypothesis that inconsistent language lateralisation is a major cause of poor language skills, the results suggested that some subtypes of language disorder are associated with inefficient distribution of language functions between hemispheres. Inconsistent lateralisation could be a causal factor in the aetiology of language disorder or may arise in some cases as the consequence of developmental disorder, possibly reflective of compensatory reorganisation.
Collapse
Affiliation(s)
- Abigail R Bradshaw
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Zoe V J Woodhead
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Paul A Thompson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Bartha-Doering L, Alexopoulos J, Giordano V, Stelzer L, Kainz T, Benavides-Varela S, Wartenburger I, Klebermass-Schrehof K, Olischar M, Seidl R, Berger A. Absence of neural speech discrimination in preterm infants at term-equivalent age. Dev Cogn Neurosci 2019; 39:100679. [PMID: 31437736 PMCID: PMC6969359 DOI: 10.1016/j.dcn.2019.100679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Children born preterm are at higher risk to develop language deficits. Auditory speech discrimination deficits may be early signs for language developmental problems. The present study used functional near-infrared spectroscopy to investigate neural speech discrimination in 15 preterm infants at term-equivalent age compared to 15 full term neonates. The full term group revealed a significantly greater hemodynamic response to forward compared to backward speech within the left hemisphere extending from superior temporal to inferior parietal and middle and inferior frontal areas. In contrast, the preterm group did not show differences in their hemodynamic responses during forward versus backward speech, thus, they did not discriminate speech from non-speech. Groups differed significantly in their responses to forward speech, whereas they did not differ in their responses to backward speech. The significant differences between groups point to an altered development of the functional network underlying language acquisition in preterm infants as early as in term-equivalent age.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Johanna Alexopoulos
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Psychoanalysis and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Vito Giordano
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Stelzer
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Kainz
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Isabell Wartenburger
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Katrin Klebermass-Schrehof
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Monika Olischar
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Atypical language representation is unfavorable for language abilities following childhood stroke. Eur J Paediatr Neurol 2019; 23:102-116. [PMID: 30314763 PMCID: PMC6339521 DOI: 10.1016/j.ejpn.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Brain plasticity has often been quoted as a reason for the more favorable outcome in childhood stroke compared to adult stroke. We investigated the relationship between language abilities and language localization in childhood stroke. Seventeen children and adolescents with left- or right-sided ischemic stroke and 18 healthy controls were tested with a comprehensive neurolinguistic test battery, and the individual neural representation of language was measured with an fMRI language paradigm. Overall, 12 of 17 stroke patients showed language abilities below average, and five patients exhibited impaired language performance. fMRI revealed increased activity in right hemisphere areas homotopic to left hemisphere language regions. In sum, seven stroke patients revealed atypical, i.e. bilateral or right lateralized language representation. Typical left hemispheric language lateralization was associated with better performance in naming and word fluency, whereas increased involvement of right homologues was accompanied by worse language outcome. In contrast, lesion lateralization or lesion volume did not correlate with language outcome or atypical language lateralization. Thus, atypical language lateralization is unfavorable for language outcome, and right homologues do not have the same cognitive capacity, even in young children.
Collapse
|
21
|
Bartha‐Doering L, Kollndorfer K, Kasprian G, Novak A, Schuler A, Fischmeister FPS, Alexopoulos J, Gaillard WD, Prayer D, Seidl R, Berl MM. Weaker semantic language lateralization associated with better semantic language performance in healthy right-handed children. Brain Behav 2018; 8:e01072. [PMID: 30298640 PMCID: PMC6236252 DOI: 10.1002/brb3.1072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The relationship between language abilities and language lateralization in the developing brain is important for our understanding of the neural architecture of language development. METHODS We investigated 35 right-handed children and adolescents aged 7-16 years with a functional magnetic resonance imaging language paradigm and a comprehensive language and verbal memory examination. RESULTS We found that less lateralized language was significantly correlated with better language performance across areas of the brain and across different language tasks. Less lateralized language in the overall brain was associated with better in-scanner task accuracy on a semantic language decision task and out-of-scanner vocabulary and verbal fluency. Specifically, less lateralized frontal lobe language dominance was associated with better in-scanner task accuracy and out-of-scanner verbal fluency. Furthermore, less lateralized parietal language was associated with better out-of-scanner verbal memory across learning, short- and long-delay trials. In contrast, we did not find any relationship between temporal lobe language laterality and verbal performance. CONCLUSIONS This study suggests that semantic language performance is better with some involvement of the nondominant hemisphere.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Kathrin Kollndorfer
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Astrid Novak
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Anna‐Lisa Schuler
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | | | - Johanna Alexopoulos
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - William Davis Gaillard
- Center for Neuroscience and Behavioral HealthChildren's National Health System (CNHS)WashingtonDCUSA
| | - Daniela Prayer
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Madison M. Berl
- Center for Neuroscience and Behavioral HealthChildren's National Health System (CNHS)WashingtonDCUSA
| |
Collapse
|