1
|
Conte D, Roman A, Beorchia Y, Pinzini C, Castriotta L, Valente M. The effects of transcranial magnetic stimulation in motor symptoms of Parkinson's disease: an overview of systematic reviews with meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08189-5. [PMID: 40237970 DOI: 10.1007/s10072-025-08189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that causes significant motor function limitations, substantially impacting the quality of life of affected individuals and their caregivers. While the currently available pharmacological therapy with levodopa can alleviate symptoms, identifying a treatment that achieves similar results with fewer adverse effects would be highly beneficial. Transcranial Magnetic Stimulation is a non-invasive stimulation of brain tissue that generates a magnetic field to modulate cortical excitability. To date, it has primarily been validated for the treatment of psychiatric conditions, but it is increasingly being used in the management of movement disorders. OBJECTIVE Although several systematic reviews with meta-analysis have been conducted on this topic, discrepancies remain in their findings. To address these inconsistencies, we conducted this overview of systematic reviews with meta-analyses to synthesise the available evidence and provide a comprehensive summary that can guide clinicians in their practice. RESULTS Evidence from 21 systematic reviews with meta-analyses, including 107 unique primary studies, suggests, with low to moderate certainty, that high-frequency stimulation of the primary and supplementary motor cortex significantly improves general motor impairment, gait, functional mobility, and balance in patients with Parkinson's disease, with minimal side effects. Other stimulation parameters, such as a higher number of sessions, a greater number of pulses per session, and the use of the F8 coil type, appear to enhance these effects. However, further research is needed to strengthen these findings. Currently, definitive conclusions cannot be drawn regarding the influence of patient characteristics on treatment outcomes.
Collapse
Affiliation(s)
- Daniele Conte
- Department of Medicine (DMED), University of Udine, Via Colugna 50, Udine, 33100, Italy.
- School of Physiotherapy, Department of Medicine (DMED), University of Udine, Udine, Italy.
| | - Anna Roman
- School of Physiotherapy, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Yvonne Beorchia
- Institute of Hygiene and Evaluative Epidemiology, Friuli Centrale University Health Authority, Udine, Italy
| | - Chiara Pinzini
- School of Physiotherapy, Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Physical Medicine and Rehabilitation "Gervasutta", Friuli Centrale University Health Authority, Udine, Italy
| | - Luigi Castriotta
- Institute of Hygiene and Evaluative Epidemiology, Friuli Centrale University Health Authority, Udine, Italy
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Trieste, Italy
| | - Mariarosaria Valente
- Department of Medicine (DMED), University of Udine, Via Colugna 50, Udine, 33100, Italy
- School of Physiotherapy, Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology Unit, Friuli Centrale University Health Authority, Udine, Italy
| |
Collapse
|
2
|
Du Y, Li Y, Hu J, Fang R, Liu Y, Cai L, Song Y, Ma S, Gao J, Zhang H, Li B, Xiong H, Yu H, Yang S, Zhu S, Zheng H. Repetitive Transcranial Magnetic Stimulation: Is it an Effective Treatment for Cancer Pain? Pain Ther 2025; 14:47-66. [PMID: 39551863 PMCID: PMC11751341 DOI: 10.1007/s40122-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a major public health issue, with an estimated 20 million new cases and 9.7 million cancer-related deaths worldwide in 2022. Approximately 44.5% of patients experience cancer pain, significantly impacting their quality of life and causing physical and psychological burdens. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, shows potential in managing cancer pain. This review summarizes current research on rTMS for cancer pain, focusing on pain directly caused by tumors, pain from cancer treatments, postoperative pain, and cancer-related symptoms. Additionally, rTMS shows promise in improving cancer-related fatigue, anxiety, depression, and cognitive dysfunction, which can indirectly reduce cancer pain. The analgesic mechanisms of rTMS include inhibiting nociceptive signal transmission in the spinal cord, modulating hemodynamic changes in brain regions, and promoting endogenous opioid release. High-frequency stimulation of the primary motor cortex (M1) has shown significant analgesic effects, improving patients' emotional and cognitive functions and overall quality of life. rTMS has a favorable safety profile, with most studies reporting no severe adverse events. In conclusion, rTMS holds substantial potential for cancer pain management, offering a non-invasive and multifaceted therapeutic approach. Continued research and clinical application are expected to establish rTMS as an essential component of comprehensive cancer pain treatment strategies, significantly enhancing the overall well-being of patients with cancer.
Collapse
Affiliation(s)
- Yanyuan Du
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Yaoyuan Li
- Department of Rehabilitation Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jieqing Hu
- Fengtai Community Health Service Center, Beijing, 100071, China
| | - Ruiying Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Yuming Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Liu Cai
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Ying Song
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Susu Ma
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Jin Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Hanyue Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Baihui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Hongtai Xiong
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Huibo Yu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Shenglei Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Shuduo Zhu
- Binzhou People's Hospital, Binzhou, 256610, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
3
|
Ramírez-López F, García-Montes JR, Millán-Aldaco D, Palomero-Rivero M, Túnez-Fiñana I, Drucker-Colín R, Roldán-Roldán G. Transcranial Magnetic Stimulation Attenuates Dyskinesias and FosB and c-Fos Expression in a Parkinson's Disease Model. Brain Sci 2024; 14:1214. [PMID: 39766413 PMCID: PMC11674860 DOI: 10.3390/brainsci14121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dopamine replacement therapy for Parkinson's disease (PD) may lead to disabling incontrollable movements known as L-DOPA-induced dyskinesias. Transcranial magnetic stimulation (TMS) has been applied as non-invasive therapy to ameliorate motor symptoms and dyskinesias in PD treatment. Recent studies have shown that TMS-induced motor effects might be related to dopaminergic system modulation. However, the mechanisms underlying these effects of TMS are not fully understood. OBJECTIVES To assess the expression of FosB and c-Fos in dopamine-D1 receptor-containing cells of dyskinetic rats and to analyze the effect of TMS on dyskinetic behavior and its histological marker (FosB). METHODS We investigated the outcome of TMS on cellular activation, using c-Fos immunoreactivity, on D1 receptor-positive (D1R+) cells into the motor cortex and striatum of dyskinetic (n = 14) and intact rats (n = 14). Additionally, we evaluated the effect of TMS on the dyskinesia global score and its molecular marker, FosB, in the striatum (n = 67). RESULTS TMS reduces c-Fos expression in D1R+cells into the motor cortex and striatum. Moreover, TMS treatment attenuated dyskinesias, along with a low stratal FosB expression. CONCLUSIONS The current study shows that TMS depressed FosB and c-Fos expression in D1R+ cells of the dorsal striatum and motor cortex, in accordance with previous evidence of its capacity to modulate the dopaminergic system, thus suggesting a mechanism by which TMS may mitigate dyskinesias. Additionally, our observations highlight the potential therapeutic effect of TMS on dyskinesias in a PD model.
Collapse
Affiliation(s)
- Fernanda Ramírez-López
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | | | - Diana Millán-Aldaco
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Marcela Palomero-Rivero
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Isaac Túnez-Fiñana
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, 14014 Cordoba, Spain;
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14014 Cordoba, Spain
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
5
|
Grobe‐Einsler M, Baljasnikowa V, Faikus A, Schaprian T, Kaut O. Cerebellar transcranial magnetic stimulation improves motor function in Parkinson's disease. Ann Clin Transl Neurol 2024; 11:2673-2684. [PMID: 39238196 PMCID: PMC11514926 DOI: 10.1002/acn3.52183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE To determine whether an accelerated protocol of 48 Hz cerebellar repetitive transcranial magnetic stimulation results in improved motor function in individuals with Parkinson's disease. METHODS In this double-blind randomized sham-controlled study, 35 individuals with Parkinson's disease and stable medical treatment were randomized to either sham or verum transcranial magnetic stimulation. The stimulation was applied bilaterally and medial over the cerebellum and comprised a novel accelerated protocol encompassing two sessions per day on 5 consecutive days. Patients were assessed at baseline, on day 5 after the last stimulation and 1 month post intervention. Measurements included dynamic posturography, UPDRS III, 8-Meter walk test, and Timed Up and Go test. RESULTS The accelerated protocol was safe and feasible in an outpatient setting. Patients in the verum group showed significant improvement (p < 0.001) of motor symptoms as measured in the UPDRS III. Improvement was mainly carried by the domains rigor, bradykinesia, and gait and persisted after 1 month (p = 0.009), whereas tremor remained unchanged. INTERPRETATION The effect of a high-dose transcranial magnetic stimulation in patients with Parkinson's disease is encouraging and comparable to other studies using much longer stimulation protocols. This short-term intervention of 5 days facilitates the future application in an outpatient setting. Reduction in hospitalization rates directly benefits patients with motor impairment.
Collapse
Affiliation(s)
- Marcus Grobe‐Einsler
- Department of NeurologyUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Aline Faikus
- Department of NeurologyUniversity Hospital BonnBonnGermany
| | | | - Oliver Kaut
- SRH Gesundheitszentrum Bad Wimpfen GmbHBad WimpfenGermany
| |
Collapse
|
6
|
Romero JP, Moreno-Verdú M, Arroyo-Ferrer A, Serrano JI, Herreros-Rodríguez J, García-Caldentey J, Rocon de Lima E, Del Castillo MD. Clinical and neurophysiological effects of bilateral repetitive transcranial magnetic stimulation and EEG-guided neurofeedback in Parkinson's disease: a randomized, four-arm controlled trial. J Neuroeng Rehabil 2024; 21:135. [PMID: 39103947 PMCID: PMC11299373 DOI: 10.1186/s12984-024-01427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) and EEG-guided neurofeedback techniques can reduce motor symptoms in Parkinson's disease (PD). However, the effects of their combination are unknown. Our objective was to determine the immediate and short-term effects on motor and non-motor symptoms, and neurophysiological measures, of rTMS and EEG-guided neurofeedback, alone or combined, compared to no intervention, in people with PD. METHODS A randomized, single-blinded controlled trial with 4 arms was conducted. Group A received eight bilateral, high-frequency (10 Hz) rTMS sessions over the Primary Motor Cortices; Group B received eight 30-minute EEG-guided neurofeedback sessions focused on reducing average bilateral alpha and beta bands; Group C received a combination of A and B; Group D did not receive any therapy. The primary outcome measure was the UPDRS-III at post-intervention and two weeks later. Secondary outcomes were functional mobility, limits of stability, depression, health-related quality-of-life and cortical silent periods. Treatment effects were obtained by longitudinal analysis of covariance mixed-effects models. RESULTS Forty people with PD participated (27 males, age = 63 ± 8.26 years, baseline UPDRS-III = 15.63 ± 6.99 points, H&Y = 1-3). Group C showed the largest effect on motor symptoms, health-related quality-of-life and cortical silent periods, followed by Group A and Group B. Negligible differences between Groups A-C and Group D for functional mobility or limits of stability were found. CONCLUSIONS The combination of rTMS and EEG-guided neurofeedback diminished overall motor symptoms and increased quality-of-life, but this was not reflected by changes in functional mobility, postural stability or depression levels. TRIAL REGISTRATION NCT04017481.
Collapse
Affiliation(s)
- Juan Pablo Romero
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Damage Unit, Hospital Beata María Ana, Madrid, Spain
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
- Brain, Action, and Skill Laboratory (BAS-Lab), Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Av. Mounier 54 (Claude Bernard), Floor +2, Office 0430, Woluwe-Saint-Lambert, 1200, Belgium.
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - J Ignacio Serrano
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| | | | | | - Eduardo Rocon de Lima
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| | - María Dolores Del Castillo
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
7
|
Akimoto T, Islam MR, Nagasako A, Kishi K, Nakakaji R, Ohtake M, Hasumi H, Yamaguchi T, Yamada S, Yamamoto T, Ishikawa Y, Umemura M. Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming. Cancer Sci 2024; 115:2686-2700. [PMID: 38877783 PMCID: PMC11309929 DOI: 10.1111/cas.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.
Collapse
Affiliation(s)
- Taisuke Akimoto
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Md Rafikul Islam
- Department of Biochemistry and Molecular BiologyWinthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS)Little RockArkansasUSA
| | - Akane Nagasako
- Cardiovascular Research InstituteYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | | | - Rina Nakakaji
- Cardiovascular Research InstituteYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Makoto Ohtake
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | | | - Shigeki Yamada
- Department of Materials System Science, Yokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Tetsuya Yamamoto
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Yoshihiro Ishikawa
- Cardiovascular Research InstituteYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| | - Masanari Umemura
- Cardiovascular Research InstituteYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
| |
Collapse
|
8
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Lyu Z, Xiao G, Xie D, Huang D, Chen Y, Wu C, Lai Y, Song Z, Huang L, Ming H, Jiang Y, Wang J, Chen R, Luo W. The protective effects of repetitive transcranial magnetic stimulation with different high frequencies on motor functions in MPTP/probenecid induced Parkinsonism mouse models. Brain Behav 2024; 14:e3605. [PMID: 38956819 PMCID: PMC11219284 DOI: 10.1002/brb3.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1β in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.
Collapse
Affiliation(s)
- Zhimai Lyu
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Guodong Xiao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dingyi Xie
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Dandan Huang
- Department of Basic Medical SciencesGannan Medical UniversityGanzhouChina
| | - Yanjun Chen
- Department of International Exchange and CooperationJiangxi University of Chinese MedicineNanchangChina
| | - Chunmei Wu
- Department of Health Statistics, School of Public Health & Health ManagementGannan Medical UniversityGanzhouChina
| | - Yanwei Lai
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Zitan Song
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Lijuan Huang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Hui Ming
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Yichen Jiang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Jinwei Wang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Rixin Chen
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
10
|
Grobe-Einsler M, Lupa A, Weller J, Kaut O. RTMS of the Cerebellum Using an Accelerated Stimulation Protocol Improved Gait in Parkinson's Disease. Neurorehabil Neural Repair 2024; 38:539-550. [PMID: 38804539 DOI: 10.1177/15459683241257518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a nonpharmacological and noninvasive brain stimulation technique that has been proven to be effective in Parkinson's disease (PD). The combination of rTMS and treadmill training improved gait function in PD greater than treadmill training alone. OBJECTIVE The aim of our study was to evaluate the combination of a novel high-intensity, short intervention rTMS treatment and a multimodal treatment protocol including of physiotherapy, occupational therapy and language therapy, the so-called Parkinson's Disease Multimodal Complex Treatment (PD-MCT), to improve motor function. METHODS In this randomized double-blind sham-controlled trial rTMS with 48 Hz or sham was applied over the cerebellum 3 times a day for 5 consecutive days. Patients were assessed at baseline (V0), after 5 days of treatment (V1), and 4 weeks later (V2). The primary clinical outcome measure was the motor sum-score of the Unified PD Rating Scale (UPDRSIII), secondary clinical outcomes were quantitative motor tasks. RESULTS A total of 36 PD patients were randomly allocated either to rTMS (n = 20) or sham (n = 16), both combined with PD-MCT. rTMS improved the UDPRSIII score comparing baseline and V1 in the treatment group by -8.2 points (P = .004). The 8MW and dynamic posturography remained unchanged in both groups after intervention. Conclusion. Compressing weeks of canonical rTMS protocols into 5 days was effective and well tolerated. rTMS may serve as an add-on therapy for augmenting the multimodal complex treatment of motor symptoms, but seems to be ineffective to treat postural instability.
Collapse
Affiliation(s)
- Marcus Grobe-Einsler
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annemarie Lupa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Johannes Weller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Oliver Kaut
- SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Bonn, Nordrhein-Westfalen, Germany
| |
Collapse
|
11
|
Sun J, Xing F, Feng J, Chen X, Lv L, Yao X, Wang M, Zhao Z, Zhou Q, Liu T, Zhan Y, Gong-Jun J, Wang K, Hu P. Differential symptom cluster responses and predictors to repetitive transcranial magnetic stimulation treatment in Parkinson's disease: A retrospective study. Heliyon 2024; 10:e32799. [PMID: 38975093 PMCID: PMC11226850 DOI: 10.1016/j.heliyon.2024.e32799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is an effective noninvasive neuromodulation technique for Parkinson's disease (PD). However, the efficacy of rTMS varies widely between individuals. This study aimed to investigate the factors related to the response to rTMS in PD patients. Methods We retrospectively analyzed the response of 70 idiopathic PD patients who underwent rTMS for 14 consecutive days targeting the supplementary motor area (SMA) in either an open-label trail (n = 31) or a randomized, double-blind, placebo-controlled trial (RCT) (n = 39). The motor symptoms of PD patients were assessed by the United Parkinson's Disease Rating Scale Part III (UPDRSIII). Based on previous studies, the UPDRSIII were divided into six symptom clusters: axial dysfunction, resting tremor, rigidity, bradykinesia affecting right and left extremities, and postural tremor. Subsequently, the efficacy of rTMS to different motor symptom clusters and clinical predictors were analyzed in these two trails. Results After 14 days of treatment, only the total UPDRSIII scores and rigidity scores improved in both the open-label trial and the RCT. The results of multiple linear regression analysis indicated that baseline rigidity scores (β = 0.37, p = 0.047) and RMT (β = 0.30, P = 0.02) positively predicted the improvement of UPDRSIII. The baseline rigidity score (β = 0.55, P < 0.0001) was identified as an independent factor to predict the improvement of rigidity. Conclusion This study demonstrated significant improvements in total UPDRSIII scores and rigidity after 14-day treatment, with baseline rigidity scores and RMT identified as predictors of treatment response, underscoring the need for individualized therapy.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Fengbo Xing
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Jingjing Feng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xin Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Lingling Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xiaoqing Yao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Mengqi Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Ziye Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Qian Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Yuqian Zhan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - J.I. Gong-Jun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- Anhui Institute of Translational Medicine, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- Anhui Institute of Translational Medicine, Hefei, 230000, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- Anhui Institute of Translational Medicine, Hefei, 230000, China
| |
Collapse
|
12
|
Xu M, Nikolin S, Samaratunga N, Chow EJH, Loo CK, Martin DM. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024; 34:250-276. [PMID: 36857011 PMCID: PMC10920443 DOI: 10.1007/s11065-023-09580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2023] [Indexed: 03/02/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a commonly used form of rTMS to treat neuropsychiatric disorders. Emerging evidence suggests that 'offline' HF-rTMS may have cognitive enhancing effects, although the magnitude and moderators of these effects remain unclear. We conducted a systematic review and meta-analysis to clarify the cognitive effects of offline HF-rTMS in healthy individuals. A literature search for randomised controlled trials with cognitive outcomes for pre and post offline HF-rTMS was performed across five databases up until March 2022. This study was registered on the PROSPERO international prospective protocol for systematic reviews (PROSPERO 2020 CRD 42,020,191,269). The Risk of Bias 2 tool was used to assess the risk of bias in randomised trials. Separate analyses examined the cognitive effects of excitatory and inhibitory forms of offline HF-rTMS on accuracy and reaction times across six cognitive domains. Fifty-three studies (N = 1507) met inclusion criteria. Excitatory offline HF-rTMS showed significant small sized effects for improving accuracy (k = 46, g = 0.12) and reaction time (k = 44, g = -0.13) across all cognitive domains collapsed. Excitatory offline HF-rTMS demonstrated a relatively greater effect for executive functioning in accuracy (k = 24, g = 0.14). Reaction times were also improved for the executive function (k = 21, g = -0.11) and motor (k = 3, g = -0.22) domains following excitatory offline HF-rTMS. The current review was restricted to healthy individuals and future research is required to examine cognitive enhancement from offline HF-rTMS in clinical cohorts.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Nisal Samaratunga
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Esther Jia Hui Chow
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- Black Dog Institute, Sydney, Australia.
- UNSW Sydney, High St, Kensington, NSW, 2052, Australia.
| |
Collapse
|
13
|
Cieslak PE, Drabik S, Gugula A, Trenk A, Gorkowska M, Przybylska K, Szumiec L, Kreiner G, Rodriguez Parkitna J, Blasiak A. Dopamine Receptor-Expressing Neurons Are Differently Distributed throughout Layers of the Motor Cortex to Control Dexterity. eNeuro 2024; 11:ENEURO.0490-23.2023. [PMID: 38423792 DOI: 10.1523/eneuro.0490-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
The motor cortex comprises the primary descending circuits for flexible control of voluntary movements and is critically involved in motor skill learning. Motor skill learning is impaired in patients with Parkinson's disease, but the precise mechanisms of motor control and skill learning are still not well understood. Here we have used transgenic mice, electrophysiology, in situ hybridization, and neural tract-tracing methods to target genetically defined cell types expressing D1 and D2 dopamine receptors in the motor cortex. We observed that putative D1 and D2 dopamine receptor-expressing neurons (D1+ and D2+, respectively) are organized in highly segregated, nonoverlapping populations. Moreover, based on ex vivo patch-clamp recordings, we showed that D1+ and D2+ cells have distinct morphological and electrophysiological properties. Finally, we observed that chemogenetic inhibition of D2+, but not D1+, neurons disrupts skilled forelimb reaching in adult mice. Overall, these results demonstrate that dopamine receptor-expressing cells in the motor cortex are highly segregated and play a specialized role in manual dexterity.
Collapse
Affiliation(s)
- Przemyslaw E Cieslak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Drabik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Martyna Gorkowska
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Kinga Przybylska
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Lukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
14
|
Tang R, Gong S, Li J, Hu W, Liu J, Liao C. Efficacy of non-pharmacological interventions for sleep quality in Parkinson's disease: a systematic review and network meta-analysis. Front Neurosci 2024; 18:1337616. [PMID: 38449730 PMCID: PMC10914945 DOI: 10.3389/fnins.2024.1337616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background Sleep disorders are one of the most common non-motor symptoms in PD. It can cause a notable decrease in quality of life and functioning in PD patients, as well as place a huge burden on both patients and caregivers. Currently, there are numerous non-pharmacological interventions available to improve sleep quality in PD, with disagreement as to which intervention is most effective. This network meta-analysis was performed to compare and rank non-pharmacological interventions to explore their efficacy in improving sleep quality in PD and to select the best interventions, with a view to providing references and bases for the development of clinical treatments and care programs. Methods The PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched from inception to December 6, 2023. Two authors independently screened all studies, extracted the data, and evaluated risk of bias of included studies. STATA software version 17.0 was used to conduct the network meta-analysis. Results Our network meta-analysis included 29 studies involving 1,477 participants and 16 non-pharmacological interventions. Although most nonpharmacological interventions showed non-significant effects, the surface under the cumulative ranking curve (SUCRA) values indicated that the best non-pharmacological intervention for sleep disorders was massage therapy (97.3%), followed by music therapy (94.2%), and Treadmill training (85.7%). Conclusion Massage therapy can be considered as an effective therapy for improving sleep quality in patients with PD. Due to limited quantity and quality of the included studies, more high quality studies are required to verify the conclusions of this network meta-analysis. Systematic review registration identifier CRD42023429339, PROSPERO (york.ac.uk).
Collapse
Affiliation(s)
| | | | | | | | - Jihong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlian Liao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Song W, Zhang Z, Lv B, Li J, Chen H, Zhang S, Zu J, Dong L, Xu C, Zhou M, Zhang T, Xu R, Zhu J, Shen T, Zhou S, Cui C, Huang S, Wang X, Nie Y, Aftab K, Xiao Q, Zhang X, Cui G, Zhang W. High-frequency rTMS over bilateral primary motor cortex improves freezing of gait and emotion regulation in patients with Parkinson's disease: a randomized controlled trial. Front Aging Neurosci 2024; 16:1354455. [PMID: 38327498 PMCID: PMC10847258 DOI: 10.3389/fnagi.2024.1354455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background Freezing of gait (FOG) is a common and disabling phenomenon in patients with Parkinson's disease (PD), but effective treatment approach remains inconclusive. Dysfunctional emotional factors play a key role in FOG. Since primary motor cortex (M1) connects with prefrontal areas via the frontal longitudinal system, where are responsible for emotional regulation, we hypothesized M1 may be a potential neuromodulation target for FOG therapy. The purpose of this study is to explore whether high-frequency rTMS over bilateral M1 could relieve FOG and emotional dysregulation in patients with PD. Methods This study is a single-center, randomized double-blind clinical trial. Forty-eight patients with PD and FOG from the Affiliated Hospital of Xuzhou Medical University were randomly assigned to receive 10 sessions of either active (N = 24) or sham (N = 24) 10 Hz rTMS over the bilateral M1. Patients were evaluated at baseline (T0), after the last session of treatment (T1) and 30 days after the last session (T2). The primary outcomes were Freezing of Gait Questionnaire (FOGQ) scores, with Timed Up and Go Test (TUG) time, Standing-Start 180° Turn (SS-180) time, SS-180 steps, United Parkinson Disease Rating Scales (UPDRS) III, Hamilton Depression scale (HAMD)-24 and Hamilton Anxiety scale (HAMA)-14 as secondary outcomes. Results Two patients in each group dropped out at T2 and no serious adverse events were reported by any subject. Two-way repeated ANOVAs revealed significant group × time interactions in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14. Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14 at T1 and T2. No significant improvement was found in the sham group. The Spearman correlation analysis revealed a significantly positive association between the changes in HAMD-24 and HAMA-14 scores and FOGQ scores at T1. Conclusion High-frequency rTMS over bilateral M1 can improve FOG and reduce depression and anxiety in patients with PD.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingchen Lv
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Manli Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ran Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jienan Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Shen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenchen Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuming Huang
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujing Nie
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kainat Aftab
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qihua Xiao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueling Zhang
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
17
|
Liu X, Li L, Liu Y. Comparative motor effectiveness of non-invasive brain stimulation techniques in patients with Parkinson's disease: A network meta-analysis. Medicine (Baltimore) 2023; 102:e34960. [PMID: 37773851 PMCID: PMC10545289 DOI: 10.1097/md.0000000000034960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Although noninvasive brain stimulation (NIBS) techniques are an effective alternative treatment option, their relative effects in patients with Parkinson's disease (PD) remain undefined. Here, we aimed to compare motor efficacy of the NIBS techniques in PD. METHODS We carried out an electronic search in PubMed, Embase, Cochrane Library, CINAHL, PEDro and PsycINFO (accessed via Ovid) for articles published until August 2022. The treatment efficacy of motor function was quantified by the Unified Parkinson's disease rating scale part III. RESULTS 28 randomized controlled trials with parallel group were included in the analysis, enrolling 1057 patients. In the "on" state, high-frequency repetitive transcranial magnetic stimulation (HFrTMS) conferred better short-term and long-term efficacy compared to transcranial direct current stimulation. Surface under the cumulative ranking curve rank showed that HFrTMS combined with transcranial direct current stimulation and low-frequency TMS ranked first among PD in improving motor function. In the "off" state, there were no significant differences in most of the treatments, but surface under the cumulative ranking curve rank showed that continuous theta burst stimulation and low-frequency TMS had the highest short- and long-term effect in improving motor function. CONCLUSION HFrTMS is an effective intervention in improving motor function. Besides, its combination with another NIBS technique produces better therapeutic effects in the "on" state.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Sport University, Beijing, China
| | - Lei Li
- Beijing Chunlizhengda Medical Instruments Co., Ltd, Beijing, China
| | - Ye Liu
- Beijing Sport University, Beijing, China
| |
Collapse
|
18
|
Bhat P, Kumaran SS, Goyal V, Srivastava AK, Behari M. Effect of rTMS at SMA on task-based connectivity in PD. Behav Brain Res 2023; 452:114602. [PMID: 37516209 DOI: 10.1016/j.bbr.2023.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can aid in alleviating clinical symptoms in Parkinson's disease (PD). To better understand the neural mechanism of the intervention, neuroimaging modalities have been used to assess the effects of rTMS. OBJECTIVE To study the changes in cortical connectivity and motor performance with rTMS at supplementary motor area (SMA) in PD using clinical assessment tools and task-based functional MRI. METHODOLOGY 3000 pulses at 5 Hz TMS were delivered at the left SMA once a week for a total of 8 consecutive weeks in 4 sham sessions (week 1-4) and 4 real sessions (week 5 to week 8) in 16 subjects with PD. The outcomes were assessed with UPDRS, PDQ 39 and task-based fMRI at baseline, after sham sessions at week 4, and after real sessions at week 8. Visuo-spatial functional MRI task along with T1 weighted scans (at 3 Tesla) were used to evaluate the effects of rTMS intervention. Multivariate pattern analysis (MVPA) was used to analyse task-based fMRI using Conn toolbox. RESULTS Improvements (p < 0.05) were observed in UPDRS II, III, Mobility and ADL of PDQ39 after real sessions of rTMS. MVPA of task-based connectivity revealed clusters of activation in right hemispheric precentral area, superior frontal gyrus, middle frontal gyrus, thalamus and cerebellum (cluster threshold pFDR=0.001). CONCLUSIONS Weekly rTMS sessions at SMA incurred clinical motor benefits as revealed by an improvement in clinical scales and dexterity performance. These benefits could be attributed to changes in connectivity remote brain regions in the motor network.
Collapse
Affiliation(s)
- Priyanka Bhat
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India.
| | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Madhuri Behari
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
19
|
Evancho A, Tyler WJ, McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front Hum Neurosci 2023; 17:1151218. [PMID: 37545593 PMCID: PMC10400781 DOI: 10.3389/fnhum.2023.1151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Collapse
Affiliation(s)
- Alexandra Evancho
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J. Tyler
- Department of Biomedical Engineering, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keith McGregor
- Department of Clinical and Diagnostic Studies, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Sekar S, Zhang Y, Miranzadeh Mahabadi H, Buettner B, Taghibiglou C. Low-Field Magnetic Stimulation Alleviates MPTP-Induced Alterations in Motor Function and Dopaminergic Neurons in Male Mice. Int J Mol Sci 2023; 24:10328. [PMID: 37373475 DOI: 10.3390/ijms241210328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies show that repetitive transcranial magnetic stimulation (rTMS) improves cognitive and motor functions in patients with Parkinson's Disease (PD). Gamma rhythm low-field magnetic stimulation (LFMS) is a new non-invasive rTMS technique that generates diffused and low-intensity magnetic stimulation to the deep cortical and subcortical areas. To investigate the potential therapeutic effects of LFMS in PD, we subjected an experimental mouse model to LFMS (as an early treatment). We examined the LFMS effect on motor functions as well as neuronal and glial activities in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male C57BL/6J mice. Mice received MPTP injection (30 mg/kg, i.p., once daily for 5 days) followed by LFMS treatment, 20 min each day for 7 days. LFMS treatment improved motor functions compared with the sham-treated MPTP mice. Further, LFMS significantly improved tyrosine hydroxylase (TH) and decreased glial fibrillary acidic protein (GFAP) levels in substantia nigra pars compacta (SNpc) and non-significantly in striatal (ST) regions. LFMS treatment improved neuronal nuclei (NeuN) levels in SNpc. Our findings suggest that early LFMS treatment improves neuronal survival and, in turn, motor functions in MPTP-treated mice. Further investigation is required to clearly define the molecular mechanisms by which LFMS improves motor and cognitive function in PD patients.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Benson Buettner
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
21
|
Jin ZH, Wang YX, Meng DT, Qin Y, Duan YN, Fang JP, Wang RD, Liu YJ, Liu C, Wang P, Yan HJ, Zhen Y, An X, Chen KK, Yu X, Lyu D, Yan XY, Fang BY. Intermittent theta-burst stimulation combined with physical therapy as an optimal rehabilitation in Parkinson's disease: study protocol for a randomised, double-blind, controlled trial. Trials 2023; 24:410. [PMID: 37328845 DOI: 10.1186/s13063-023-07425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND First-line rehabilitative strategies to improve motor deficits are based on functional training (physical or occupational therapy), which has been demonstrated to facilitate neural reorganisation. Accumulating evidence suggests that non-invasive brain stimulation techniques, such as repetitive TMS (rTMS), may enhance neuroplasticity, thereby facilitating neural reorganisation and recovery from Parkinson's disease. Evidence also shows that intermittent theta-burst stimulation (iTBS) can improve motor function and quality of life in patients by promoting the excitability and neural remodelling of cerebral cortex. We aimed to combine iTBS stimulation with physiotherapy to improve the rehabilitation effect compared to physiotherapy alone in patients with Parkinson's disease. METHODS This randomised, double-blind clinical trial will enrol 50 Parkinson's disease patients aged 45-70 years with Hoehn and Yahr scale scores of 1-3. Patients are randomly assigned to either the iTBS + physiotherapy or sham-iTBS + physiotherapy group. The trial consists of a 2-week double-blind treatment period and a 24-week follow-up period. iTBS and sham-iTBS will be administered twice daily for 10 days based on physiotherapy. The primary outcome will be the third part of Movement Disorders-Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) from the baseline to the first 2 days following completion hospitalised intervention. The secondary outcome will be 39-item Parkinson's Disease Questionnaire (PDQ-39) at 4 weeks, 12 weeks and 24 weeks after intervention. Tertiary outcomes are clinical evaluations and mechanism study outcomes such as NMSS, 6MWD, 10MT, TUG, BBS, MRI, and EEG, the length of time between the drug needs to be adjusted when symptoms fluctuate. DISCUSSION The aim of this study is to demonstrate that iTBS can promote overall function and quality of life in Parkinson's disease patients using physiotherapy and that this efficacy may be associated with altered neuroplasticity in exercise-related brain regions. The iTBS combined with physiotherapy training model will be evaluated during a 6-month follow-up period. With significant improvement in quality of life and motor function, iTBS combined with physiotherapy can be considered as a first-line rehabilitation option for Parkinson's disease. The potential of iTBS to enhance neuroplasticity in the brain should have a more positive impact in increasing the generality and efficiency of physiotherapy, improving the quality of life and overall functional status of patients with Parkinson's disease. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2200056581. Registered on 8 February 2022.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi-Xuan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - De-Tao Meng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Qin
- Capital Medical University, Beijing, China
| | | | - Jin-Ping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Rui-Dan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yan-Jun Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Cui Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ping Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Hong-Jiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Zhen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xia An
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ke-Ke Chen
- Capital Medical University, Beijing, China
| | - Xin Yu
- Capital Medical University, Beijing, China
| | - Diyang Lyu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xiao-Yan Yan
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China.
| |
Collapse
|
22
|
Kar SK. Scope of add on repetitive transcranial magnetic stimulation in treating depression in Parkinson's disease. CNS Spectr 2023; 28:267-268. [PMID: 35081994 DOI: 10.1017/s1092852922000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, India
| |
Collapse
|
23
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
24
|
Dong K, Zhu X, Xiao W, Gan C, Luo Y, Jiang M, Liu H, Chen X. Comparative efficacy of transcranial magnetic stimulation on different targets in Parkinson's disease: A Bayesian network meta-analysis. Front Aging Neurosci 2023; 14:1073310. [PMID: 36688161 PMCID: PMC9845788 DOI: 10.3389/fnagi.2022.1073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background/Objective The efficacy of transcranial magnetic stimulation (TMS) on Parkinson's disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD. Methods A Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson's Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method. Results Thirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons. Conclusion Considering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).
Collapse
Affiliation(s)
- Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chu Gan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulu Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manying Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Guangzhou, China,Hanjun Liu,
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xi Chen,
| |
Collapse
|
25
|
Lin X, Zhang Y, Chen X, Wen L, Duan L, Yang L. Effects of noninvasive brain stimulation on dual-task performance in different populations: A systematic review. Front Neurosci 2023; 17:1157920. [PMID: 37113144 PMCID: PMC10128879 DOI: 10.3389/fnins.2023.1157920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background Increasing research has investigated the use of noninvasive brain stimulation (NIBS) on augmenting dual-task (DT) performance. Objective To investigate the effects of NIBS on DT performance in different populations. Methods Extensive electronic database search (from inception to November 20, 2022) was conducted in PubMed, Medline, Cochrane Library, Web of Science and CINAHL to identify randomized controlled trials (RCTs) that investigated the effects of NIBS on DT performance. Main outcomes were balance/mobility and cognitive function under both single-task (ST) and DT conditions. Results Fifteen RCTs were included, involving two types of intervention techniques: transcranial direct current stimulation (tDCS) (twelve RCTs) and repetitive transcranial magnetic stimulation (rTMS) (three RCTs); and four different population groups: healthy young adults, older adults, Parkinson's disease (PD), and stroke. For tDCS, under DT condition, significant improvement in speed was only observed in one PD and one stroke RCT, and stride time variability in one older adults RCT. Reduction in DTC in some gait parameters was demonstrated in one RCT. Only one RCT showed significant reduction in postural sway speed and area during standing under DT condition in young adults. For rTMS, significant improvements in fastest walking speed and time taken to Timed-up-and-go test under both ST and DT conditions were observed at follow-up in one PD RCT only. No significant effect on cognitive function in any RCT was observed. Conclusion Both tDCS and rTMS showed promising effects in improving DT walking and balance performance in different populations, however, due to the large heterogeneity of included studies and insufficient data, any firm conclusion cannot be drawn at present.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Yanming Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Lifen Wen
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Lian Duan
- School of Rehabilitation, Kunming Medical University, Yunnan Province, China
- *Correspondence: Lian Duan, ; Lei Yang,
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
- *Correspondence: Lian Duan, ; Lei Yang,
| |
Collapse
|
26
|
Zang Z, Song T, Li J, Nie B, Mei S, Zhang C, Wu T, Zhang Y, Lu J. Simultaneous PET/fMRI revealed increased motor area input to subthalamic nucleus in Parkinson's disease. Cereb Cortex 2022; 33:167-175. [PMID: 35196709 DOI: 10.1093/cercor/bhac059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Invasive electrophysiological recordings in patients with Parkinson's disease (PD) are extremely difficult for cross-sectional comparisons with healthy controls. Noninvasive approaches for identifying information flow between the motor area and the subthalamic nucleus (STN) are critical for evaluation of treatment strategy. We aimed to investigate the direction of the cortical-STN hyperdirect pathway using simultaneous 18F-FDG-PET/functional magnetic resonance imaging (fMRI). Data were acquired during resting state on 34 PD patients and 25 controls. The ratio of standard uptake value for PET images and the STN functional connectivity (FC) maps for fMRI data were generated. The metabolic connectivity mapping (MCM) approach that combines PET and fMRI data was used to evaluate the direction of the connectivity. Results showed that PD patients exhibited both increased FDG uptake and STN-FC in the sensorimotor area (PFDR < 0.05). MCM analysis showed higher cortical-STN MCM value in the PD group (F = 6.63, P = 0.013) in the left precentral gyrus. There was a high spatial overlap between the increased glucose metabolism and increased STN-FC in the sensorimotor area in PD. The MCM approach further revealed an exaggerated cortical input to the STN in PD, supporting the precentral gyrus as a target for treatment such as the repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19, Shijingshan district, Beijing 100049, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Chun Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| |
Collapse
|
27
|
Michael P, Constantinou Juhasz SB, Evagorou O, Psalta L, Mikellides G. High-frequency rTMS improves quality of life and depressive symptoms in Parkinson's disease: A case report. Heliyon 2022; 8:e12196. [PMID: 36568654 PMCID: PMC9768304 DOI: 10.1016/j.heliyon.2022.e12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Parkinson's disease (PD) is a common neurodegenerative disorder, characterised by both motor and nonmotor symptoms. There is currently no cure for PD, although there are several treatment options for relieving PD symptoms. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation therapy that shows promising results for the treatment of PD. Methods Here, we present a patient with PD. We investigated whether an accelerate form of high-frequency (HF) rTMS on the contralateral side to the patient's main difficulties is clinically effective in treating health-related quality of life (QoL) symptomatology and depressive symptoms in PD as well as the long-term effects of rTMS in PD during the maintenance phase. Results Results showed that HF-rTMS administered over the right primary motor cortex (M1) is a safe and well-tolerated treatment that improved the patient's health related QoL and depressive symptoms. These positive effects lasted at least five months post treatment. Conclusion Therefore, HF-rTMS over the right M1 can be a possible treatment option for patients with PD, although further investigations are necessary to validate the findings of the present case report.
Collapse
Affiliation(s)
| | | | - Olympia Evagorou
- Department of Psychiatry, Medical School, Democritus University of Thrace, Greece
| | - Lilia Psalta
- Department of Psychology, University of Cyprus, Cyprus,School of Science, University of Central Lancashire, Cyprus
| | - Georgios Mikellides
- Cyprus rTMS Centre, Cyprus,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands,Medical School, University of Nicosia, Cyprus,Corresponding author.
| |
Collapse
|
28
|
Pei G, Liu X, Huang Q, Shi Z, Wang L, Suo D, Funahashi S, Wu J, Zhang J, Fang B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front Aging Neurosci 2022; 14:1045073. [PMID: 36408100 PMCID: PMC9669794 DOI: 10.3389/fnagi.2022.1045073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson’s disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinting Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Jian Zhang,
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Boyan Fang,
| |
Collapse
|
29
|
Deng S, Dong Z, Pan L, Liu Y, Ye Z, Qin L, Liu Q, Qin C. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson's disease: A systematic review with meta-analysis. Brain Behav 2022; 12:e2697. [PMID: 35862217 PMCID: PMC9392523 DOI: 10.1002/brb3.2697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is acknowledged to be crucial to manage freezing of gait (FOG) and cognitive impairment for patients with Parkinson's disease (PD), but its effectiveness is unclear. OBJECTIVE To determine the effects of rTMS on FOG and cognitive function in people with PD and to investigate potential factors that modulate the rTMS effects. METHODS Databases searched included PubMed, Web of Science, EMBASE, and the Cochrane Library from inception to December 31, 2021. Eligible studies include a controlled randomized clinical trial of rTMS intervention for FOG and cognitive dysfunction in PD patients. The weighted mean difference (WMD) with 95% confidence intervals (CI) were calculated with fixed-effects models. The outcome of the study included gait and cognitive assessments. RESULTS Sixteen studies with a total of 419 patients were included. Fixed-effects analysis revealed that rTMS was effective in improving freezing of gait questionnaire scores (short-term effect: WMD = -0.925, 95% CI: -1.642 to -0.209, p = .011; long-term effect: WMD = -2.120, 95% CI: -2.751 to -1.489, p = .000), 10-m walking time (short-term effect: WMD = -0.456, 95% CI: -0.793 to -0.119, p = .008; long-term effect: WMD = -0.526, 95% CI: -0.885 to -0.167, p = .004), Timed Up-and-Go scores (short-term effect: WMD = -1.064, 95% CI: -1.555 to -0.572, p = .000; long-term effect: WMD = -1.097, 95% CI: -1.422 to -0.772, p = .000), Montreal cognitive assessment (WMD = 3.714, 95% CI: 2.567 to 4.861, p = .000), and frontal assessment battery (WMD = -0.584, 95% CI: -0.934 to -0.234, p = .001). CONCLUSIONS RTMS showed a beneficial effect on FOG and cognitive dysfunction in parkinsonism. However, the optimal rTMS protocol has not been determined and further high-quality studies are needed.
Collapse
Affiliation(s)
- Shan Deng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhimei Dong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liya Pan
- Department of Neurology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Qin
- Department of Neurology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qianqian Liu
- Department of Neurology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
31
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
Affiliation(s)
- Guven Toprak
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
32
|
Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, Lozano AM, Chen R. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul 2022; 15:737-746. [DOI: 10.1016/j.brs.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
|
33
|
Sasegbon A, Hammerbeck U, Michou E, Cheng I, Zhang M, James C, Hamdy S. A feasibility pilot study of the effects of neurostimulation on swallowing function in Parkinson’s Disease. AMRC OPEN RESEARCH 2022; 3:19. [PMID: 35726231 PMCID: PMC7612876 DOI: 10.12688/amrcopenres.13007.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction Dysphagia often occurs during Parkinson’s disease (PD) and can have severe consequences. Recently, neuromodulatory techniques have been used to treat neurogenic dysphagia. Here we aimed to compare the neurophysiological and swallowing effects of three different types of neurostimulation, 5 Hertz (Hz) repetitive transcranial magnetic stimulation (rTMS), 1 Hz rTMS and pharyngeal electrical stimulation (PES) in patients with PD. Method 12 PD patients with dysphagia were randomised to receive either 5 Hz rTMS, 1 Hz rTMS, or PES. In a cross-over design, patients were assigned to one intervention and received both real and sham stimulation. Patients received a baseline videofluoroscopic (VFS) assessment of their swallowing, enabling penetration aspiration scores (PAS) to be calculated for: thin fluids, paste, solids and cup drinking. Swallowing timing measurements were also performed on thin fluid swallows only. They then had baseline recordings of motor evoked potentials (MEPs) from both pharyngeal and (as a control) abductor pollicis brevis (APB) cortical areas using single-pulse TMS. Subsequently, the intervention was administered and post interventional TMS recordings were taken at 0 and 30 minutes followed by a repeat VFS within 60 minutes of intervention. Results All interventions were well tolerated. Due to lower than expected recruitment, statistical analysis of the data was not undertaken. However, with respect to PAS swallowing timings and MEP amplitudes, there was small but visible difference in the outcomes between active and sham. Conclusion PES, 5 Hz rTMS and 1 Hz rTMS are tolerable interventions in PD related dysphagia. Due to small patient numbers no definitive conclusions could be drawn from the data with respect to individual interventions improving swallowing function and comparative effectiveness between interventions. Larger future studies are needed to further explore the efficacy of these neuromodulatory treatments in Parkinson’s Disease associated dysphagia.
Collapse
Affiliation(s)
- Ayodele Sasegbon
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| | - Ulrike Hammerbeck
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| | - Emilia Michou
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
- Department of Speech and Language Therapy, University of Patras, Patras, Greece
| | - Ivy Cheng
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| | - Mengqing Zhang
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| | - Charlotte James
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| | - Shaheen Hamdy
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, Greater Manchester, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
34
|
Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: methodology and future applications. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOptogenetics is an emerging biological approach with the unique capability of specific targeting due to the precise light control with high spatial and temporal resolution. It uses selected light wavelengths to control and modulate the biological functions of cells, tissues, and organ levels. Optogenetics has been instrumental in different biomedical applications, including neuroscience, diabetes, and mitochondria, based on distinctive optical biomedical effects with light modulation. Nowadays, optogenetics in cardiology is rapidly evolving for the understanding and treatment of cardiovascular diseases. Several in vitro and in vivo research for cardiac optogenetics demonstrated visible progress. The optogenetics technique can be applied to address critical cardiovascular problems such as heart failure and arrhythmia. To this end, this paper reviews cardiac electrophysiology and the technical progress about experimental and clinical cardiac optogenetics and provides the background and evolution of cardiac optogenetics. We reviewed the literature to demonstrate the servo type, transfection efficiency, signal recording, and heart disease targets in optogenetic applications. Such literature review would hopefully expedite the progress of optogenetics in cardiology and further expect to translate into the clinical terminal in the future.
Collapse
|
35
|
Bolotova NV, Filina NY, Kurdiyan MS, Kompaniets OV, Garifulina LM, Meshcheryakova IY. Using Transcranial Magnetic Therapy In Combination With Electrostimulation For Correcting Neuroendocrine-Immune Disorders In Obese Boys. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — To justify the use of low-intensity transcranial magnetic therapy (TCMT) in combination with electrostimulation (TES) for the correction of neuroendocrine-immune disorders. Material and Methods — Fifty adolescent boys with exogenous constitutional obesity 13-15 years of age were examined. The control group consisted of 30 boys aged 13-15 years without obesity and concomitant pathology. The examination included an assessment of complaints, anamnesis of the disease, life history, objective data, hormonal status, neurotransmitters and cytokines. By random sampling, the group of obese children was divided into two subgroups: subgroup 1a (n=24), who received TCMT in combination with TES, and subgroup 1b – comparison group (n=22), who received placebo therapy with disconnected electrodes. Both groups of children received identical recommendations regarding the nutrition. The effectiveness of the therapy was evaluated after 3 months. The treatment course comprised 10 procedures. Statistical processing of the obtained data was carried out using the statistical software package Statistica 8. Results — An increase in the levels of testosterone and β – endorphin as well as a decrease in estradiol and kisspeptin, which was accompanied by a decrease in body weight was observed in children of subgroup 1a (n=24) under the influence of TCMT in combination with TES. In subgroup 1b (n=22) receiving placebo therapy with disconnected electrodes, there was also a decrease in body weight, but at a much lower level. Conclusion — The use of TCMT in combination with TES led to the normalization of neuroendocrine-immune disorders and contributed to weight loss.
Collapse
|
36
|
D'Agostino S, Colella M, Liberti M, Falsaperla R, Apollonio F. Systematic numerical assessment of occupational exposure to electromagnetic fields of Transcranial Magnetic Stimulation. Med Phys 2022; 49:3416-3431. [PMID: 35196394 PMCID: PMC9401858 DOI: 10.1002/mp.15567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aims to perform a classification and rigorous numerical evaluation of the risks of occupational exposure in the health environment related to the administration of transcranial magnetic stimulation (TMS) treatment. The study investigates the numerically estimated induced electric field that occurs in the human tissues of an operator caused by exposure to the variable magnetic field produced by TMS during treatments. This could be a useful starting point for future risk assessment studies and safety indications in this context. Methods We performed a review of the actual positions assumed by clinicians during TMS treatments. Three different TMS coils (two circular and one figure‐of‐eight) were modeled and characterized numerically. Different orientations and positions of each coil with respect to the body of the operator were investigated to evaluate the induced electric (‐E) field in the body tissues. The collected data were processed to allow comparison with the safety standards for occupational exposure, as suggested by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) 2010 guidelines. Results Under the investigated conditions, exposure to TMS shows some criticalities for the operator performing the treatment. Depending on the model of the TMS coil and its relative position with respect to the operator's body, the numerically estimated E‐field could exceed the limits suggested by the ICNIRP 2010 guidelines. We established that the worst‐case scenario for the three coils occurs when they are placed in correspondence of the abdomen, with the handle oriented parallel to the body (II orientation). Working at a maximum TMS stimulator output (MSO), the induced E‐field is up to 7.32 V/m (circular coil) and up to 1.34 V/m (figure‐of‐eight coil). The induced E‐field can be modulated by the TMS percentage of MSO (%MSO) and by the distance between the source and the operator. At %MSO equal to or below 80%, the figure‐of‐eight coil was compliant with the ICNIRP limit (1.13 V/m). Conversely, the circular coil causes an induced E‐field above the limits, even when powered at a %MSO of 30%. Thus, in the investigated worst‐case conditions, an operator working with a circular coil should keep a distance from its edge to be compliant with the guidelines limit, which depends on the selected %MSO: 38 cm at 100%, 32 cm at 80%, 26.8 cm at 50%, and 19.8 cm at 30%. Furthermore, attention should be paid to the induced E‐field reached in the operator's hand as the operator typically holds the coil by hand. In fact in the hand, we estimated an induced E‐field up to 10 times higher than the limits. Conclusions Our numerical results indicate that coil positions, orientations, and distances with respect to the operator's body can determine the levels of induced E‐field that exceed the ICNIRP limits. The induced E‐field is also modulated by the choice of %MSO, which is related to the TMS application. Even under the best exposure conditions, attention should be paid to the exposure of the hand. These findings highlight the need for future risk assessment studies to provide more safety information for the correct and safe use of TMS devices.
Collapse
Affiliation(s)
- S D'Agostino
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy.,INAIL, Italian Workers' Compensation Authority, via di Fontana Candida 1, Monte Porzio Catone, Rome, 00040, Italy
| | - M Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - M Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - R Falsaperla
- INAIL, Italian Workers' Compensation Authority, via di Fontana Candida 1, Monte Porzio Catone, Rome, 00040, Italy
| | - F Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| |
Collapse
|
37
|
Cheng B, Zhu T, Zhao W, Sun L, Shen Y, Xiao W, Zhang S. Effect of Theta Burst Stimulation-Patterned rTMS on Motor and Nonmotor Dysfunction of Parkinson's Disease: A Systematic Review and Metaanalysis. Front Neurol 2022; 12:762100. [PMID: 35095722 PMCID: PMC8790062 DOI: 10.3389/fneur.2021.762100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Theta burst stimulation (TBS), a type of patterned repetitive transcranial magnetic stimulation (rTMS), has several advantages, such as short time of single treatment and low stimulation intensity compared with traditional rTMS. Since the efficacy of TBS on the symptoms of Parkinson's disease (PD) was inconsistent among different studies, we systematically searched these studies and quantitatively analyzed the therapeutic effect of TBS for patients with PD. Methods: We followed the recommended PRISMA guidelines for systematic reviews. Studies from PubMed, EMBASE, CENTRAL, and ClinicalTrials.gov from January 1, 2005 of each database to September 30, 2021 were analyzed. We also manually retrieved studies of reference. Results: Eight eligible studies with 189 participants (received real TBS and/or sham TBS) were included. This metaanalysis found that TBS did not significantly improve Unified Parkinson's Disease Rating Scale part III (UPDRS-III) score in the “on” medicine state (SMD = −0.06; 95% CI, −0.37 to 0.25; p = 0.69; I2 = 0%), while, it brought significant improvement of UPDRS-III scores in the “off” medicine state (SMD = −0.37; 95% CI, −0.65 to −0.09; p < 0.01; I2 = 19%). Subgroup analysis found that merely continuous TBS (cTBS) over the supplementary motor area (SMA) brought significant improvement of UPDRS-III score (SMD = −0.63; 95% CI, −1.02 to −0.25; p < 0.01). TBS had insignificant effectiveness for upper limb movement disorder both in the “on” and “off” medicine status (SMD = −0.07; 95% CI, −0.36 to 0.22; p = 0.64; I2 = 0%; SMD = −0.21; 95% CI, −0.57 to 0.15; p = 0.26; I2 = 0%; respectively). TBS significantly improved slowing of gait in the “off” medicine status (SMD = −0.37; 95% CI, −0.71 to −0.03; p = 0.03; I2 = 0%). Subgroup analysis suggested that only intermittent TBS (iTBS) over the primary motor cortex (M1) + dorsolateral prefrontal cortex (DLPFC) had significant difference (SMD = −0.57; 95% CI, −1.13 to −0.01; p = 0.04). Additionally, iTBS over the M1+ DLPFC had a short-term (within 2 weeks) therapeutic effect on PD depression (MD = −2.93; 95% CI, −5.52 to −0.33; p = 0.03). Conclusion: Our study demonstrated that cTBS over the SMA could significantly improve the UPDRS-III score for PD patients in the “off,” not in the “on,” medicine state. TBS could not bring significant improvement of upper limb movement dysfunction. ITBS over the M1+DLPFC could significantly improve the slowing of gait in the “off” medicine status. Additionally, iTBS over the M1+DLPFC has a short-term (within 2 weeks) therapeutic effect on PD depression. Further RCTs of a large sample, and excellent design are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| | - Tao Zhu
- Department of Preventive Medicine, North Sichuan Medical College (University), Nanchong, China
| | - Wenhao Zhao
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| | - Ling Sun
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| | - Yao Shen
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| | - Wei Xiao
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of Medical College, North Sichuan Medical College (University), Nanchong, China
| |
Collapse
|
38
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
39
|
Cosentino G, Todisco M, Blandini F. Noninvasive neuromodulation in Parkinson's disease: Neuroplasticity implication and therapeutic perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:185-198. [PMID: 35034733 DOI: 10.1016/b978-0-12-819410-2.00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive brain stimulation techniques can be used to study in vivo the changes of cortical activity and plasticity in subjects with Parkinson's disease (PD). Also, an increasing number of studies have suggested a potential therapeutic effect of these techniques. High-frequency repetitive transcranial magnetic stimulation (rTMS) and anodal transcranial direct current stimulation (tDCS) represent the most used stimulation paradigms to treat motor and nonmotor symptoms of PD. Both techniques can enhance cortical activity, compensating for its reduction related to subcortical dysfunction in PD. However, the use of suboptimal stimulation parameters can lead to therapeutic failure. Clinical studies are warranted to clarify in PD the additional effects of these stimulation techniques on pharmacologic and neurorehabilitation treatments.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
40
|
Camacho‐Conde JA, Gonzalez‐Bermudez MDR, Carretero‐Rey M, Khan ZU. Brain stimulation: a therapeutic approach for the treatment of neurological disorders. CNS Neurosci Ther 2022; 28:5-18. [PMID: 34859593 PMCID: PMC8673710 DOI: 10.1111/cns.13769] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Brain stimulation has become one of the most acceptable therapeutic approaches in recent years and a powerful tool in the remedy against neurological diseases. Brain stimulation is achieved through the application of electric currents using non-invasive as well as invasive techniques. Recent technological advancements have evolved into the development of precise devices with capacity to produce well-controlled and effective brain stimulation. Currently, most used non-invasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In last decade, application of these brain stimulation techniques has not only exploded but also expanded to wide variety of neurological disorders. Therefore, in the current review, we will provide an overview of the potential of both non-invasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques in the treatment of such brain diseases.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
| | - Zafar U. Khan
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
- CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
41
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
42
|
Pastore-Wapp M, Lehnick D, Nef T, Bohlhalter S, Vanbellingen T. Combining Repetitive Transcranial Magnetic Stimulation and Video Game-Based Training to Improve Dexterity in Parkinson's Disease: Study Protocol of a Randomized Controlled Trial. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:777981. [PMID: 36188867 PMCID: PMC9397672 DOI: 10.3389/fresc.2021.777981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Introduction: Patients with Parkinson's disease (PD) often exhibit difficulties with dexterity during the performance of activities of daily living (ADL) due to dysfunctional supplementary motor area (SMA). The aim of this clinical trial protocol work is to describe how the effectiveness of a combined repetitive transcranial magnetic stimulation (rTMS) over SMA and video-game-based skill training (VBT) in PD will be evaluated. The short and long-term benefits are assessed. Methods and analysis: A single-blind (patients) stratified (based on Hoehn & Yahr) parallel randomized sham-controlled rTMS-VBT study with a baseline and two follow-up measurements (3 and 12 weeks) is being conducted. These measurements include the dexterity questionnaire 24 (DextQ-24) as a primary outcome, and nine hole peg test and coin rotation task as main secondary dexterity outcomes. Further secondary outcomes will be the subscale II of the movement disorders society unified PD rating scale (MDS-UPDRS) to assess improvements on overall ADL and the Parkinson's Disease Questionnaire-39 to assess quality of life. Thirty-six outpatients (from one neurorehabilitation center) with PD (diagnosis based on brain bank criteria) will be recruited who report difficulties with dexterity in performing ADL. All PD patients will receive a 45-min VBT three times a week for 3 weeks. The PD patients randomized in the experimental group will receive VBT preceded by real rTMS, being intermittent theta burst (iTBS) stimulation sessions. The PD patients randomized to the control group receive a VBT with sham rTMS. Discussion: The study will provide evidence to determine whether a combined iTBS and VBT skill intervention is more effective than a VBT intervention alone to improve dexterity in PD. Ethics and dissemination: The study was approved by the Ethics Committee for Northwest and Central Switzerland (EKNZ), Switzerland 2019–00433. The study will be conducted in accordance with the Helsinki Declaration and the Guidelines of Good Clinical Practice. Informed consent will be signed prior to subject enrolment. Dissemination will include submission to international peer-reviewed professional journals and presentation at international congresses. The study protocol has been registered in the clinicaltrials.gov registry with the identification code: NCT04699149.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Dirk Lehnick
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- *Correspondence: Tim Vanbellingen ;
| |
Collapse
|
43
|
Motor Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training. J Neurosci 2021; 41:8618-8631. [PMID: 34429380 DOI: 10.1523/jneurosci.2249-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Human participants of both sexes were trained on foreign language (L2) words and their native language translations over 4 consecutive days. L2 words were accompanied by complementary gestures (sensorimotor enrichment) or pictures (sensory enrichment). Following training, participants translated the auditorily presented L2 words that they had learned. During translation, repetitive transcranial magnetic stimulation was applied bilaterally to a site within the primary motor cortex (Brodmann area 4) located in the vicinity of the arm functional compartment. Responses within the stimulated motor region have previously been found to correlate with behavioral benefits of sensorimotor-enriched L2 vocabulary learning. Compared to sham stimulation, effective perturbation by repetitive transcranial magnetic stimulation slowed down the translation of sensorimotor-enriched L2 words, but not sensory-enriched L2 words. This finding suggests that sensorimotor-enriched training induced changes in L2 representations within the motor cortex, which in turn facilitated the translation of L2 words. The motor cortex may play a causal role in precipitating sensorimotor-based learning benefits, and may directly aid in remembering the native language translations of foreign language words following sensorimotor-enriched training. These findings support multisensory theories of learning while challenging reactivation-based theories.SIGNIFICANCE STATEMENT Despite the potential for sensorimotor enrichment to serve as a powerful tool for learning in many domains, its underlying brain mechanisms remain largely unexplored. Using transcranial magnetic stimulation and a foreign language (L2) learning paradigm, we found that sensorimotor-enriched training can induce changes in L2 representations within the motor cortex, which in turn causally facilitate the translation of L2 words. The translation of recently acquired L2 words may therefore rely not only on auditory information stored in memory or on modality-independent L2 representations, but also on the sensorimotor context in which the words have been experienced.
Collapse
|
44
|
Frey J, Hess CW, Kugler L, Wajid M, Wagle Shukla A. Transcranial Magnetic Stimulation in Tremor Syndromes: Pathophysiologic Insights and Therapeutic Role. Front Neurol 2021; 12:700026. [PMID: 34512517 PMCID: PMC8426899 DOI: 10.3389/fneur.2021.700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Liam Kugler
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Manahil Wajid
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
45
|
Godeiro C, França C, Carra RB, Saba F, Saba R, Maia D, Brandão P, Allam N, Rieder CRM, Freitas FC, Capato T, Spitz M, Faria DDD, Cordellini M, Veiga BAAG, Rocha MSG, Maciel R, Melo LBD, Möller PDS, R R Júnior M, Fornari LHT, Mantese CE, Barbosa ER, Munhoz RP, Coletta MVD, Cury RG. Use of non-invasive stimulation in movement disorders: a critical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:630-646. [PMID: 34468499 DOI: 10.1590/0004-282x-anp-2020-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noninvasive stimulation has been widely used in the past 30 years to study and treat a large number of neurological diseases, including movement disorders. OBJECTIVE In this critical review, we illustrate the rationale for use of these techniques in movement disorders and summarize the best medical evidence based on the main clinical trials performed to date. METHODS A nationally representative group of experts performed a comprehensive review of the literature in order to analyze the key clinical decision-making factors driving transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in movement disorders. Classes of evidence and recommendations were described for each disease. RESULTS Despite unavoidable heterogeneities and low effect size, TMS is likely to be effective for treating motor symptoms and depression in Parkinson's disease (PD). The efficacy in other movement disorders is unclear. TMS is possibly effective for focal hand dystonia, essential tremor and cerebellar ataxia. Additionally, it is likely to be ineffective in reducing tics in Tourette syndrome. Lastly, tDCS is likely to be effective in improving gait in PD. CONCLUSIONS There is encouraging evidence for the use of noninvasive stimulation on a subset of symptoms in selected movement disorders, although the means to optimize protocols for improving positive outcomes in routine clinical practice remain undetermined. Similarly, the best stimulation paradigms and responder profile need to be investigated in large clinical trials with established therapeutic and assessment paradigms that could also allow genuine long-term benefits to be determined.
Collapse
Affiliation(s)
- Clecio Godeiro
- Universidade Federal do Rio Grande do Norte, Departamento de Medicina Integrada, Natal RN, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Felipe Saba
- Universidade Estadual de Campinas, São Paulo SP, Brazil
| | - Roberta Saba
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Débora Maia
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Carlos R M Rieder
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Tamine Capato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, Netherlands
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Unidade de Distúrbios do Movimento, Rio de Janeiro RJ, Brazil
| | - Danilo Donizete de Faria
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | | | | | - Maria Sheila G Rocha
- Hospital Santa Marcelina, Departamento de Neurologia e Neurocirurgia Funcional, São Paulo SP, Brazil
| | - Ricardo Maciel
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Lucio B De Melo
- Universidade Estadual de Londrina, Serviço de Neurologia, Londrina PR, Brazil
| | - Patricia D S Möller
- Hospital da Criança de Brasília José Alencar, Unidade Pediátrica de Distúrbios do Movimento, Brasília DF, Brazil
| | - Magno R R Júnior
- Universidade Federal do Maranhão, Hospital Universitário, São Luís MA, Brazil
| | - Luís H T Fornari
- Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Carlos E Mantese
- Hospital Mãe de Deus, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital - UHN, Division of Neurology, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto ON, Canada.,Krembil Brain Institute, Toronto ON, Canada
| | | | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
46
|
Shirahige L, Berenguer-Rocha M, Mendonça S, Rocha S, Rodrigues MC, Monte-Silva K. Quantitative Electroencephalography Characteristics for Parkinson's Disease: A Systematic Review. JOURNAL OF PARKINSONS DISEASE 2021; 10:455-470. [PMID: 32065804 PMCID: PMC7242841 DOI: 10.3233/jpd-191840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Individualized treatment guided by biomarkers certainly will play a crucial role in the more effective treatment of various neurological diseases in the near future. Identifying the electroencephalographic biomarkers in the brain of patients with Parkinson's disease (PD) may help in the decision-making process of health professionals regarding the non-invasive brain stimulation (NIBS) protocols. OBJECTIVE To summarize quantitative electroencephalographic (qEEG) characteristics of patients with PD with motor symptoms at rest or during movement to identify potential biomarker associated with motor impairment in PD. METHODS A systematic search was conducted in the databases MEDLINE/PubMed, LILACS/BIREME, CINAHL/EBSCO, Web of Science, and CENTRAL, performed according to PRISMA-statement guidelines. Two independent authors searched for studies that reported qEEG data related to motor outcomes at rest or during movements in patients with PD and compared the data with control healthy group. The studies' methodological quality was examined using the Cochrane Handbook. Studies/sample characteristics, qEEG parameters/analyses, and the studies' results were summarized. Prospero-register: CRD42018085660. RESULTS Nineteen studies (18 cross-sectional/one cross-over) with 312 PD patients and 277 controls, published between 1994-2018, were included for the qualitative analysis. In comparison to healthy controls, our findings suggest a slowing down of the cortical activity in patients with PD due to an increase of slower band waves activity and a decrease of fast band waves at resting and during complex movement execution mainly in the central and frontal cortex. CONCLUSION Slowing down of cortical waves suggest excitatory NIBS for motor impairment in PD. However, qEEG biomarker for motor symptoms of PD cannot be established yet because the studies that related qEEG with motor outcomes presented methodological poor quality.
Collapse
Affiliation(s)
- Lívia Shirahige
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Marina Berenguer-Rocha
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Sarah Mendonça
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Sérgio Rocha
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Cairrão Rodrigues
- Neurodinamics Laboratory, Department of Physiology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
47
|
Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat Hum Behav 2021; 5:1707-1716. [PMID: 34239076 PMCID: PMC8688172 DOI: 10.1038/s41562-021-01161-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Damage to specific brain circuits can cause specific neuropsychiatric symptoms. Therapeutic stimulation to these same circuits may modulate these symptoms. To determine if these circuits converge, we studied depression severity after brain lesions (n=461, five datasets), transcranial magnetic stimulation (TMS) (n=151, four datasets), and deep brain stimulation (DBS) (n=101, five datasets). Lesions and stimulation sites most associated with depression severity were connected to a similar brain circuit across all 14 datasets (p<0.001). Circuits derived from lesions, DBS, and TMS were similar (p<0.0005), as were circuits derived from patients with major depression versus other diagnoses (p<0.001). Connectivity to this circuit predicted out-of-sample antidepressant efficacy of TMS and DBS sites (p<0.0001). In an independent analysis, 29 lesions and 95 stimulation sites converged on a distinct circuit for motor symptoms of Parkinson’s disease (p<0.05). We conclude that lesions, TMS, and DBS converge on common brain circuitry that may represent improved neurostimulation targets for depression and other disorders.
Collapse
|
48
|
Pang MY. Physiotherapy management of Parkinson's disease. J Physiother 2021; 67:163-176. [PMID: 34154949 DOI: 10.1016/j.jphys.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Marco Yc Pang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
49
|
Motor Cortex Stimulation Reversed Hypernociception, Increased Serotonin in Raphe Neurons, and Caused Inhibition of Spinal Astrocytes in a Parkinson's Disease Rat Model. Cells 2021; 10:cells10051158. [PMID: 34064617 PMCID: PMC8150310 DOI: 10.3390/cells10051158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
Persistent pain is a prevalent symptom of Parkinson’s disease (PD), which is related to the loss of monoamines and neuroinflammation. Motor cortex stimulation (MCS) inhibits persistent pain by activating the descending analgesic pathways; however, its effectiveness in the control of PD-induced pain remains unclear. Here, we evaluated the analgesic efficacy of MCS together with serotonergic and spinal glial modulation in an experimental PD (ePD) rat model. Wistar rats with unilateral striatal 6-OHDA and MCS were assessed for behavioral immobility and nociceptive responses. The immunoreactivity of dopamine in the substantia nigra and serotonin in the nucleus raphe magnus (NRM) and the neuronal, astrocytic, and microglial activation in the dorsal horn of the spinal cord were evaluated. MCS, without interfering with dopamine loss, reversed ePD-induced immobility and hypernociception. This response was accompanied by an exacerbated increase in serotonin in the NRM and a decrease in neuronal and astrocytic hyperactivation in the spinal cord, without inhibiting ePD-induced microglial hypertrophy and hyperplasia. Taken together, MCS induces analgesia in the ePD model, while restores the descending serotonergic pathway with consequent inhibition of spinal neurons and astrocytes, showing the role of MCS in PD-induced pain control.
Collapse
|
50
|
Ji G, Liu T, Li Y, Liu P, Sun J, Chen X, Tian Y, Chen X, Dahmani L, Liu H, Wang K, Hu P. Structural correlates underlying accelerated magnetic stimulation in Parkinson's disease. Hum Brain Mapp 2021; 42:1670-1681. [PMID: 33314545 PMCID: PMC7978118 DOI: 10.1002/hbm.25319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days. Patients treated with real cTBS, but not with sham cTBS, showed a significant improvement in Part III of the Unified PD Rating Scale (p < .0001). This improvement was observed as early as 1 week after the start of cTBS treatment, and maintained 8 weeks after the end of the treatment. These findings indicated that the treatment response was swift with a long-lasting effect. Imaging analyses showed that volume of the left globus pallidus (GP) increased after cTBS treatment. Furthermore, the volume change of GP was mildly correlated with symptom improvement and associated with the baseline fractional anisotropy of SMA-GP tracts. Together, these findings implicated that the accelerated cTBS could effectively alleviate motor symptoms of PD, maybe by modulating the motor circuitry involving the SMA-GP pathway.
Collapse
Affiliation(s)
- Gong‐Jun Ji
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Tingting Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Ying Li
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Pingping Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Jinmei Sun
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xingui Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Yanghua Tian
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xianwen Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Louisa Dahmani
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hesheng Liu
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kai Wang
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Panpan Hu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| |
Collapse
|