1
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
2
|
Foglia SD, Adams FC, Ramdeo KR, Drapeau CC, Turco CV, Tarnopolsky M, Ma J, Nelson AJ. Investigating the effects of dopamine on short- and long-latency afferent inhibition. J Physiol 2024; 602:2253-2264. [PMID: 38638084 DOI: 10.1113/jp286126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.
Collapse
Affiliation(s)
- Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Faith C Adams
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chloe C Drapeau
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Hou J, Xiao Q, Zhou M, Xiao L, Yuan M, Zhong N, Long J, Luo T, Hu S, Dong H. Lower synaptic density associated with gaming disorder: an 18F-SynVesT-1 PET imaging study. Gen Psychiatr 2023; 36:e101112. [PMID: 37829163 PMCID: PMC10565144 DOI: 10.1136/gpsych-2023-101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Background Internet gaming disorder (IGD) is an ideal model to study the mechanisms underlying synaptic deficits in addiction as it eliminates the confounding effects of substance use. Synaptic loss and deficits are hypothesised to underlie the enduring maladaptive behaviours and impaired cognitive function that contribute to IGD. Aims This study aimed to determine whether subjects with IGD have lower synaptic density than control subjects and the relationship between synaptic density and IGD severity. Methods Eighteen unmedicated subjects diagnosed with current IGD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria and 16 demographically matched healthy controls (HCs) participated in the study and underwent 18F-labelled difluoro-analogue of UCB-J (18F-SynVesT-1) positron emission tomography scans to assess the density of synaptic vesicle glycoprotein 2A (SV2A). The Internet Gaming Disorder Scale-Short Form (IGDS9-SF), Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Rating Scale (HAMA), Barratt Impulsiveness Scale Version 11 (BIS-11), Stroop Colour-Word Test (SCWT), stop-signal paradigms and N-back tasks were administered to all subjects. Results Patients with IGD had significantly higher scores on the IGDS9-SF, HAMD, HAMA and BIS-11 than HCs. HCs performed better on the two-back and SCWT tests as well as in terms of stop-signal reaction times (SSRTs) in the stop-signal paradigms than patients with IGD. Lower uptake was found in the bilateral putamen, right pregenual anterior cingulate cortex and Rolandic operculum of patients with IGD compared with HCs. Furthermore, in the IGD group, IGDS9-SF scores and daily gaming hours were negatively correlated with the standardised uptake value ratios of 18F-SynVesT-1 in the bilateral putamen. Longer SSRTs were significantly associated with lower SV2A density in the right pregenual anterior cingulate cortex and right Rolandic operculum. Conclusions The in vivo results in this study suggest that lower synaptic density contributes to the severity and impairments in inhibitory control of IGD. These findings may provide further incentive to evaluate interventions that restore synaptic transmission and plasticity to treat IGD.
Collapse
Affiliation(s)
- Jiale Hou
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Ming Yuan
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Na Zhong
- Department of Substance Use and Addictive Behaviors Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Long
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Tao Luo
- Department of Psychology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Hu
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, China
| | - Huixi Dong
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Motomura E, Tanii H, Kawano Y, Inui K, Okada M. Catechol-O-methyltransferase (COMT) Val158Met Polymorphism and Prepulse Inhibition of the Change-related Cerebral Response. Psychiatry Res Neuroimaging 2022; 323:111484. [PMID: 35472623 DOI: 10.1016/j.pscychresns.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Change-related potentials elicited by an abrupt sound feature's change are attenuated by a leading weak sound (prepulse inhibition: PPI). We investigated whether the PPI index is associated with the catechol-methyltransferase (COMT) Val158Met polymorphism (rs4680), which is involved in the metabolism of dopamine in the prefrontal cortex. Healthy subjects with normal hearing were recruited (n = 70). A train of 100-Hz clicks 650 ms in duration was used. The test stimulus was an abrupt increase in sound intensity (+10 dB) from the baseline (70 dB) provided at 400 ms after the sound onset. Three consecutive clicks at 30, 40, and 50 ms before the change's onset were greater (+3 or +5 dB) from the baseline as a prepulse. The targeting auditory evoked potential component was Change-N1 peaking approx. 130 ms after the change onset. We calculated the inhibition level as the% inhibition of the Change-N1 amplitude by a prepulse. The %PPI in the Met-carriers was significantly greater than that in the Val/Val-individuals. Our results suggest that dopamine might play a role in the PPI of the change-related response. We propose that this index has the potential to identify an intermediate phenotype in psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Tsu, Japan; Department of Health Promotion and Disease Prevention, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
5
|
Molecular Imaging of the GABAergic System in Parkinson's Disease and Atypical Parkinsonisms. Curr Neurol Neurosci Rep 2022; 22:867-879. [PMID: 36400877 PMCID: PMC9750911 DOI: 10.1007/s11910-022-01245-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE OF REVIEW During recent years, there has been a growing interest in GABAergic alterations in parkinsonian disorders. This paper aims to review the latest literature published, focusing on in vivo neuroimaging, and to suggest potential future avenues of research in the field. RECENT FINDINGS A growing number of neuroimaging studies have focused on the association with different symptoms of Parkinson's disease, thereby suggesting a GABAergic role in motor symptoms, gait disturbances, frontal cognition, somatic symptom disorder, and hallucinations. However, there are a number of conflicting results, and further investigations in larger, clinically well-defined cohorts are needed to elucidate possible correlations. In progressive supranuclear palsy, recent evidence suggests a decrease of GABA in the frontal lobe. In this narrative review, we discuss the possible GABAergic role in the symptoms of PD and atypical parkinsonisms and outline possible research strategies for future neuroimaging of GABAergic changes in parkinsonian disorders.
Collapse
|
6
|
Weidacker K, Johnston SJ, Mullins PG, Boy F, Dymond S. Neurochemistry of response inhibition and interference in gambling disorder: a preliminary study of γ-aminobutyric acid (GABA+) and glutamate-glutamine (Glx). CNS Spectr 2021:1-11. [PMID: 33752778 DOI: 10.1017/s1092852921000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurobehavioral research on the role of impulsivity in gambling disorder (GD) has produced heterogeneous findings. Impulsivity is multifaceted with different experimental tasks measuring different subprocesses, such as response inhibition and distractor interference. Little is known about the neurochemistry of inhibition and interference in GD. METHODS We investigated inhibition with the stop signal task (SST) and interference with the Eriksen Flanker task, and related performance to metabolite levels in individuals with and without GD. We employed magnetic resonance spectroscopy (MRS) to record glutamate-glutamine (Glx/Cr) and inhibitory, γ-aminobutyric acid (GABA+/Cr) levels in the dorsal ACC (dACC), right dorsolateral prefrontal cortex (dlPFC), and an occipital control voxel. RESULTS We found slower processing of complex stimuli in the Flanker task in GD (P < .001, η2p = 0.78), and no group differences in SST performance. Levels of dACC Glx/Cr and frequency of incongruent errors were correlated positively in GD only (r = 0.92, P = .001). Larger positive correlations were found for those with GD between dACC GABA+/Cr and SST Go error response times (z = 2.83, P = .004), as well as between dACC Glx/Cr and frequency of Go errors (z = 2.23, P = .03), indicating general Glx-related error processing deficits. Both groups expressed equivalent positive correlations between posterror slowing and Glx/Cr in the right dlPFC (GD: r = 0.74, P = .02; non-GD: r = .71, P = .01). CONCLUSION Inhibition and interference impairments are reflected in dACC baseline metabolite levels and error processing deficits in GD.
Collapse
Affiliation(s)
| | | | - Paul G Mullins
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Frederic Boy
- School of Psychology, Swansea University, Swansea, United Kingdom
- School of Management, Swansea University, Swansea, United Kingdom
| | - Simon Dymond
- School of Psychology, Swansea University, Swansea, United Kingdom
- Department of Psychology, Reykjavík University, Reykjavík, Iceland
| |
Collapse
|
7
|
Song Y, Gong T, Xiang Y, Mikkelsen M, Wang G, Edden RAE. Single-dose L-dopa increases upper brainstem GABA in Parkinson's disease: A preliminary study. J Neurol Sci 2021; 422:117309. [PMID: 33548666 DOI: 10.1016/j.jns.2021.117309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder, characterized by the dysfunction between dopaminergic and GABAergic neuronal activities. Dopamine (DA) replacement by its precursor L-dopa remains the primary treatment for PD. In this preliminary study, we test the hypotheses that GABA+ levels would be lower in PD patients than controls, and normalized by L-dopa. METHODS Eleven PD patients and eleven age-and gender-matched healthy controls underwent a 1H-MRS scan of the upper brainstem using a J-difference-edited sequence to resolve signals of GABA. PD patients did not take all dopaminergic medicines for at least twelve hours prior to the first scan, and were scanned again after resuming L -dopa (pre- and post-L-dopa). MRS data were processed using the Gannet. Differences of GABA+ (GABA, macromolecules, and homocarnosine) levels within-subject (PD: pre- and post-L-dopa) and between-subjects (HC vs. PD-pre or PD-post) were tested using linear mixed-effects models with Holm-Bonferroni correction applied to pairwise comparisons. RESULTS Significant increased GABA+ levels were observed in the upper brainstem of PD patients post-L-dopa compared with pre-L-dopa (p < 0.001). Patients' GABA+ levels before administration of L-dopa were significantly lower than HCs (p = 0.001). Increased GABA+ level by administration of L-dopa in PD patients (post-L-dopa) was lower compared with HCs, but not significantly (p = 0.52). CONCLUSION Increased GABA+ levels were present in the upper brainstem with PD patients post-L-dopa, suggesting dopaminergic therapy capable of improving dopamine may improve the GABA+ levels in the upper brainstem, thereby achieving the effect of modulating the GABAergic system in the treatment of PD.
Collapse
Affiliation(s)
- Yulu Song
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Tao Gong
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yuanyuan Xiang
- Department of Neurology, Shandong Province Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
8
|
Chowdhury NS, Livesey EJ, Blaszczynski A, Harris JA. Motor cortex dysfunction in problem gamblers. Addict Biol 2021; 26:e12871. [PMID: 31927792 DOI: 10.1111/adb.12871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Impairments in response inhibition have been implicated in gambling psychopathology. This behavioral impairment may suggest that the neural mechanisms involved in response inhibition, such as GABAA -mediated neurotransmission in the primary motor cortex (M1), are also impaired. The present study obtained paired-pulse transcranial magnetic stimulation markers of GABAA and glutamate receptor activity from the left M1 of three groups-problem gamblers (n = 17, 12 males), at-risk gamblers (n = 29, 19 males), and controls (n = 23, six males)-with each group matched for alcohol use, substance use, and attention-deficit hyperactivity disorder (ADHD) symptomology. Response inhibition was measured using the stop signal task. Results showed that problem gamblers had weaker M1 GABAA receptor activity relative to controls and elevated M1 glutamate receptor activity relative to at-risk gamblers and controls. Although there were no differences in response inhibition between the groups, poorer response inhibition was correlated with weaker M1 GABAA receptor activity. These findings are the first to show that problem gambling is associated with alterations in M1 GABAA and glutamate-mediated neurotransmission.
Collapse
Affiliation(s)
- Nahian S. Chowdhury
- School of Psychology The University of Sydney Camperdown New South Wales Australia
| | - Evan J. Livesey
- School of Psychology The University of Sydney Camperdown New South Wales Australia
| | - Alex Blaszczynski
- School of Psychology The University of Sydney Camperdown New South Wales Australia
| | - Justin A. Harris
- School of Psychology The University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
9
|
Tremblay S, Tuominen L, Zayed V, Pascual-Leone A, Joutsa J. The study of noninvasive brain stimulation using molecular brain imaging: A systematic review. Neuroimage 2020; 219:117023. [DOI: 10.1016/j.neuroimage.2020.117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
|
10
|
Antons S, Brand M, Potenza MN. Neurobiology of cue-reactivity, craving, and inhibitory control in non-substance addictive behaviors. J Neurol Sci 2020; 415:116952. [DOI: 10.1016/j.jns.2020.116952] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/19/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
|
11
|
Li Y, Ramoz N, Derrington E, Dreher JC. Hormonal responses in gambling versus alcohol abuse: A review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109880. [PMID: 32004637 DOI: 10.1016/j.pnpbp.2020.109880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/01/2020] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
The endocrine system plays an essential role in communication between various organs of the body to maintain homeostasis. Both substance use disorders (SUDs) and non-substance abuse disrupt this system and lead to hormonal dysregulations. Here, we focus on the comparison between the function of the endocrine system in gambling disorders and alcohol addiction to understand the commonalities and differences in their neurobiological and psychological underpinnings. We review human research to compare findings on gambling addiction and alcohol dependence pertaining to the dynamic interplay between testosterone and cortisol. Understanding and classifying similarities in hormonal responses between behavioural addiction and SUDs may facilitate development of treatments and therapeutic interventions across different types of addictive disorders, while describing differences may shed light on therapeutic interventions for specific disorders. Although research on gambling addiction is in its infancy, such evaluation may still have a positive effect for addiction research, thereby stimulating discovery of "crossover" pharmacotherapies with benefits for both SUDs and nonsubstance addictions.
Collapse
Affiliation(s)
- Yansong Li
- Competition, Addiction and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Nicolas Ramoz
- Vulnerability of Psychiatric and Addictive Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France.
| | - Edmund Derrington
- Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
| | - Jean-Claude Dreher
- Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France.
| |
Collapse
|
12
|
Lou HC, Rømer Thomsen K, Changeux JP. The Molecular Organization of Self-awareness: Paralimbic Dopamine-GABA Interaction. Front Syst Neurosci 2020; 14:3. [PMID: 32047425 PMCID: PMC6997345 DOI: 10.3389/fnsys.2020.00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
The electrophysiology of the paralimbic network ("default mode") for self-awareness has drawn much attention in the past couple of decades. In contrast, knowledge of the molecular organization of conscious experience has only lately come into focus. We here review newer data on dopaminergic control of awareness in humans, particularly in self-awareness. These results implicate mainly dopaminergic neurotransmission and the control of GABAergic function directly in the paralimbic network. The findings are important for understanding addiction, developmental disorders, and dysfunctional consciousness.
Collapse
Affiliation(s)
- Hans C Lou
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kristine Rømer Thomsen
- Department of Psychology and Behavioral Sciences, Center for Alcohol and Drug Research, School of Business and Social Sciences, Aarhus, Denmark
| | | |
Collapse
|
13
|
Møller A, Rømer Thomsen K, Brooks DJ, Mouridsen K, Blicher JU, Hansen KV, Lou HC. Attenuation of dopamine-induced GABA release in problem gamblers. Brain Behav 2019; 9:e01239. [PMID: 30788911 PMCID: PMC6422713 DOI: 10.1002/brb3.1239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION We have previously shown that an interaction between medial prefrontal and parietal cortices is instrumental in promoting self-awareness via synchronizing oscillations in the gamma range. The synchronization of these oscillations is modulated by dopamine release. Given that such oscillations result from intermittent GABA stimulation of pyramidal cells, it is of interest to determine whether the dopaminergic system regulates GABA release directly in cortical paralimbic regions. Here, we test the hypothesis that the regulation of the GABA-ergic system by the dopaminergic system becomes attenuated in problem gamblers resulting in addictive behaviors and impaired self-awareness. METHODS [11 C]Ro15-4513 PET, a marker of benzodiazepine α1/α5 receptor availability in the GABA receptor complex, was used to detect changes in synaptic GABA levels after oral doses of 100mg L-dopa in a double-blind controlled study of male problem gamblers (N = 10) and age-matched healthy male controls (N = 10). RESULTS The mean reduction of cortical gray matter GABA/BDZ receptor availability induced by L-dopa was significantly attenuated in the problem gambling group compared to the healthy control group (p = 0.0377). CONCLUSIONS Our findings demonstrate that: (a) Exogenous dopamine can induce synaptic GABA release in healthy controls. (b) This release is attenuated in frontal cortical areas of males suffering from problem gambling, possibly contributing to their loss of inhibitory control. This suggests that dysfunctional dopamine regulation of GABA release may contribute to problem gambling and gambling disorder.
Collapse
Affiliation(s)
- Arne Møller
- Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | | | - David J Brooks
- Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Division of Neuroscience, University of Newcastle, Tyne, UK
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jakob U Blicher
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Kim V Hansen
- Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
| | - Hans C Lou
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|