1
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
2
|
Ahuja S, Sureka N, Zaheer S. Unraveling the intricacies of cancer-associated fibroblasts: a comprehensive review on metabolic reprogramming and tumor microenvironment crosstalk. APMIS 2024. [PMID: 38873945 DOI: 10.1111/apm.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are crucial component of tumor microenvironment (TME) which undergo significant phenotypic changes and metabolic reprogramming, profoundly impacting tumor growth. This review delves into CAF plasticity, diverse origins, and the molecular mechanisms driving their continuous activation. Emphasis is placed on the intricate bidirectional crosstalk between CAFs and tumor cells, promoting cancer cell survival, proliferation, invasion, and immune evasion. Metabolic reprogramming, a cancer hallmark, extends beyond cancer cells to CAFs, contributing to the complex metabolic interplay within the TME. The 'reverse Warburg effect' in CAFs mirrors the Warburg effect, involving the export of high-energy substrates to fuel cancer cells, supporting their rapid proliferation. Molecular regulations by key players like p53, Myc, and K-RAS orchestrate this metabolic adaptation. Understanding the metabolic symbiosis between CAFs and tumor cells opens avenues for targeted therapeutic strategies to disrupt this dynamic crosstalk. Unraveling CAF-mediated metabolic reprogramming provides valuable insights for developing novel anticancer therapies. This comprehensive review consolidates current knowledge, shedding light on CAFs' multifaceted roles in the TME and offering potential targets for future therapies.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol 2024; 15:1359600. [PMID: 38515749 PMCID: PMC10954773 DOI: 10.3389/fimmu.2024.1359600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.
Collapse
Affiliation(s)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
4
|
Chen X, Wang S, Lai Y, Wang G, Wei M, Jin X, Ding J, Zhang Y, Shi Y, Wang F, Zhu H, Yang Z, Wang X. Fibroblast Activation Protein and Glycolysis in Lymphoma Diagnosis: Comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT. J Nucl Med 2023; 64:1399-1405. [PMID: 37385675 DOI: 10.2967/jnumed.123.265530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
Our objective was to compare the diagnostic performance of 68Ga-labeled fibroblast activation protein (FAP) inhibitor (FAPI) and 18F-labeled FDG PET/CT in diagnosing lymphomas and to characterize the influence of FAP and glycolytic markers on tracer uptake by involved lesions. Methods: Participants with different lymphoma subtypes who were prospectively recruited from May 2020 to December 2021 underwent 68Ga-FAPI and 18F-FDG PET/CT. Immunohistochemistry was performed to evaluate FAP, hexokinase 2, and glucose transporter 1 (GLUT1) expression, and the paired-samples t test and Wilcoxon signed-rank test were used to compare parameters. The correlation between the immunochemistry results and tracer uptake was determined by the Spearman rank correlation coefficient. Results: In total, 186 participants (median age, 52 y [interquartile range, 41-64 y]; 95 women) were included. Dual-tracer imaging produced 3 types of imaging profiles. 18F-FDG PET possessed a higher staging accuracy (98.4%) than 68Ga-FAPI PET (86.0%). In 5,980 lymphoma lesions, 18F-FDG PET/CT detected more nodal (4,624 vs. 2,196) and extranodal (1,304 vs. 845) lesions than 68Ga-FAPI PET/CT. Additionally, 52 68Ga-FAPI-positive/18F-FDG-negative lesions and 2,939 68Ga-FAPI-negative/18F-FDG-positive lesions were observed. In many lymphoma subtypes, semiquantitative evaluation revealed no significant differences in SUVmax or target-to-liver ratios between 68Ga-FAPI and 18F-FDG PET/CT (P > 0.05). Interestingly, GLUT1 and hexokinase 2 were overexpressed both in lymphoma cells and in the tumor microenvironment, whereas FAP was expressed only in stromal cells. FAP and GLUT1 expression correlated positively with 68Ga-FAPI SUVmax (r = 0.622, P = 0.001) and 18F-FDG SUVmax (r = 0.835, P < 0.001), respectively. Conclusion: 68Ga-FAPI PET/CT was inferior to 18F-FDG PET/CT in diagnosing lymphomas with low FAP expression. However, the former may supplement the latter and help reveal the molecular profile of lymphomas.
Collapse
Affiliation(s)
- Xuetao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Shuailiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yumei Lai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guochang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Maomao Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xiao Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xuejuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| |
Collapse
|
5
|
Role of intra-tumoral vasculature imaging features on susceptibility weighted imaging in differentiating primary central nervous system lymphoma from glioblastoma: a multiparametric comparison with pathological validation. Neuroradiology 2022; 64:1801-1818. [DOI: 10.1007/s00234-022-02946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
6
|
Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist Updat 2022; 61:100822. [DOI: 10.1016/j.drup.2022.100822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023]
|
7
|
Sun X, Huang Q, Peng F, Wang J, Zhao W, Guo G. Expression and Clinical Significance of HKII and HIF-1α in Grade Groups of Prostate Cancer. Front Genet 2021; 12:680928. [PMID: 34220956 PMCID: PMC8248182 DOI: 10.3389/fgene.2021.680928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCA) is the second leading cause of cancer-related mortality in men. The glycolytic enzymes hexokinase II (HKII) and the major regulator hypoxia-inducible factor-1α (HIF-1α) are PCA-specific biomarkers. Some studies have shown that HKII and HIF-1α are highly expressive in PCA and are associated with the growth and metastasis of treatment. Whether HKII and HIF-1α regulate the different differentiation of PCA remains largely unknown. Therefore, the study aims to explore the value of HKII and HIF-1α in different grade groups of PCA. Our data indicated that compared with normal prostate tissues, the level of mRNA and protein of HKII and HIF-1α in PCA increased significantly, besides the results showed the high expression of HKII and HIF-1α had a tendency to promote the progression and differentiation of PCA. The study also found that HKII expression was positively correlated with the expression of HIF-1α. HKII and HIF-1α were related to the degree of differentiation PCA, especially in high-grade PCA. Furthermore, the high expression of HKII was significantly associated with Gleason score and histological differentiation in clinicopathological characteristics of patients with PCA. These results were further used to confirm that the expression of HKII and HIF-1α was associated with the progression and differentiation of PCA. These experiments indicated that HKII and HIF-1α might be novel biomarkers of PCA with potential clinical application value, provide a new potential target for PCA treatment, and are expected to be used for individualized treatment in patients with PCA.
Collapse
Affiliation(s)
- Xueqi Sun
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, China
| | - Qirui Huang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China.,College of Computer Science and Software, Shenzhen University, Shenzhen, China
| | - Fang Peng
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, China
| | - Jian Wang
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, China
| | - Weidong Zhao
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Guangxiu Guo
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, China
| |
Collapse
|
8
|
Wang X, He Q, Chen Q, Xue B, Wang J, Wang T, Liu H, Chen X. Network pharmacology combined with metabolomics to study the mechanism of Shenyan Kangfu Tablets in the treatment of diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113817. [PMID: 33444720 DOI: 10.1016/j.jep.2021.113817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenyan Kangfu Tablets (SYKFT) is a traditional prescription evolved from Shenqi Pills. It has been included in the Synopsis of the Golden Chamber for more than 2000 years. SYKFT was listed as a national Chinese medicine protected class by the China Food and Drug Administration. Diabetic nephropathy (DN) is one of the serious microvascular diseases caused by diabetes and is also one of the important factors leading to the death of patients. The pathogenesis of DN is diverse and complex, and there is no particularly effective drug treatment. There is clinical evidence that SYKFT has a good therapeutic effect on DN with no obvious adverse effects, but the mechanism of treatment is not clear. AIM OF THE STUDY In this study, network pharmacology was combined with metabolomics technology to explore the mechanism of SYKFT in the treatment of DN. MATERIALS AND METHODS First, the research team conducted a qualitative study of the chemical components contained in SYKFT, and carried out network pharmacology to search for potential targets based on the characterized chemical components. Second, we analysed the metabolic profile of db/db mouse urine based on UHPLC-QTOF-MS technology, and biomarkers were identified by multivariate statistical analysis. Then, we performed further pathway enrichment analysis. Finally, the results of metabolomics and network pharmacology were conjointly analysed. RESULTS Seventy-five chemical components of SYKFT were identified. According to the TCMSP database, the corresponding targets of the qualitatively identified components were searched, and a total of 36 potentially active components and 160 targets related to DN were obtained. A total of 38 biomarkers were found in metabolomics based on UHPLC-QTOF-MS technology. Biosynthesis of unsaturated fatty acids and starch and sucrose metabolism are the most related pathways, the former of which has been rarely reported concerning DN. Finally, the results of the joint analysis show that two targets, hexokinase 2 (HK2) and maltase glucoamylase (MGAM), are the overlapping targets. It means they are not only the related targets of pathways involved in potential biomarkers in metabolomics but also the intersection targets of diseases and drugs identified by network pharmacology. CONCLUSIONS The study reveals that the potential mechanism of SYKFT is most related to insulin resistance (IR) in the treatment of DN. It also proves that network pharmacology combined with metabolomics to find the mechanisms by which herbs treat complex diseases is a feasible tool.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaoyu He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Beibei Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Wang
- Tianjin Tongrentang Group Co., Ltd, Tianjin, 300385, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Zhang YH, Yan XZ, Xu SF, Pang ZQ, Li LB, Yang Y, Fan YG, Wang Z, Yu X, Guo C, Ao Q. α-Lipoic Acid Maintains Brain Glucose Metabolism via BDNF/TrkB/HIF-1α Signaling Pathway in P301S Mice. Front Aging Neurosci 2020; 12:262. [PMID: 32973490 PMCID: PMC7471806 DOI: 10.3389/fnagi.2020.00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
The microtubule-associated protein tau is closely correlated with hypometabolism in Alzheimer’s disease (AD). α-lipoic acid (LA), which is a naturally occurring cofactor in mitochondrial, has been shown to have properties that can inhibit the tau pathology and neuronal damage in our previous research. However, if LA affects glucose metabolism when it reverses tau pathology remains unclear, especially concerning the potential mechanism. Therefore, we make a further study using the P301S mouse model (a tauopathy and AD mouse model which overexpressing fibrillary tau) to gain a clear idea of the aforementioned problems. Here, we found chronic LA administration significantly increased glucose availability by elevating glucose transporter 3 (GLUT3), GLUT4, vascular endothelial growth factor (VEGF) protein and mRNA level, and heme oxygenase-1 (HO-1) protein level in P301S mouse brains. Meanwhile, we found that LA also promoted glycolysis by directly upregulating hexokinase (HK) activity, indirectly by increasing proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and DNA repair enzymes (OGG1/2 and MTH1). Further, we found the underlying mechanism of restored glucose metabolism might involve in the activation of brain-derived neurotrophic factor (BDNF)/tyrosine Kinase receptor B (TrkB)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway by LA treatment.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xin-Zhu Yan
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Shuang-Feng Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lin-Bo Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhuo Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Xin Yu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qiang Ao
- School of Fundamental Sciences, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Shen N, Wang Y, Sun X, Bai X, He J, Cui Q, Qian J, Zhu H, Chen Y, Xing R, Liu Q, Wu Y, Li J, Lai W, Sun S, Ji N, Liu Y. Expression of hypoxia-inducible factor 1α, glucose transporter 1, and hexokinase 2 in primary central nervous system lymphoma and the correlation with the biological behaviors. Brain Behav 2020; 10:e01718. [PMID: 32533646 PMCID: PMC7428508 DOI: 10.1002/brb3.1718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND It has been indicated that abnormal glucose metabolism mediated by hypoxia-inducible factor 1α (HIF-1α) played an essential role in the development of solid tumor. However, there were rare studies about the role of them in primary central nervous system lymphoma (PCNSL). OBJECTIVE To investigate the protein levels of HIF-1α, glucose transporter 1 (GLUT1), and hexokinase 2 (HK2) in PCNSL and whether their levels are associated with prognostic factors. METHODS Expression of HIF-1α, GLUT1, and HK2 in 39 tumor tissues was evaluated by immunohistochemical stainning. The correlation of the expression of HIF-1α with the protein level of GLUT1 and HK2 was investigated. In addition, the association between these protein expression levels and clinical parameters and prognosis was analyzed. RESULTS In the tumor specimens of PCNSL, positive stainings of HIF-1α, GLUT1, and HK2 were in 23 patients (58.97%), 25 patients (64.1%), and 26 patients (66.67%), respectively, which were associated with the expression level of lactic dehydrogenase (LDH), but not with age, gender, number of lesion, ECOG score, or deep structure. The expression of HIF-1α was positively correlated with the expression of GLUT1 (p < .01, r = .749) and HK2 (p < .01, r = .787). Univariate analysis showed that upregulated GLUT1 was unfavorable predictors of progression-free survival (PFS) in PCNSL. The results of Cox proportional hazards model showed GLUT1 was significantly associated with shorter PFS (hazard ration: 5.65; 95% confidence interval: 1.23-25.84; p = .026). CONCLUSIONS This study indicated that there was a hypoxic microenvironment and HIF-1α was involved in the regulation of glycolysis pathway in PCNSL. GLUT1 might be a potential marker for shorter PFS in PCNSL.
Collapse
Affiliation(s)
- Na Shen
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyan Bai
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinglan He
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Qian
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuedan Chen
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruixian Xing
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Wu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junhong Li
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Lai
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shengjun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|