1
|
Pike NA, Avedissian T, Halnon NH, Lewis AB, Kumar R. Low pre-albumin but not thiamine predicts cognitive deficits in adolescents post-Fontan and healthy controls. Cardiol Young 2024; 34:803-808. [PMID: 37850442 DOI: 10.1017/s1047951123003396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND Low pre-albumin, body mass index, and thiamine levels have been associated with poor nutritional status and cognitive/memory deficits in adult heart failure patients. However, the relationship of these nutritional/dietary intake biomarkers to cognition has not been assessed in adolescents post-Fontan procedure and healthy controls. METHODS This is a cross-sectional study. Adolescents (14-21 years of age) post-Fontan completion were recruited from paediatric cardiology clinics and controls from the community. The Montreal Cognitive Assessment was administered (normal ≥ 26), and blood draw (thiamine [normal 70-110 nmol/L] and pre-albumin levels [adolescent normal 23-45 mg/dL]) and the Thiamine Food Frequency Questionnaire were completed by all participants. RESULTS Seventy subjects, 40 post-Fontan (mean age 16 ± 1.6, female 51%, Hispanic 44%, hypoplastic left heart syndrome 26%) and 30 controls (mean age 16.8 ± 1.9, female 52%, Hispanic 66%), were participated. Post-Fontan group had lower median total cognitive scores (23 versus 29, p < 0.001), pre-albumin levels (23 versus 27, p = 0.013), and body mass index (20 versus 24, p = 0.027) than controls. Post-Fontan group had higher thiamine levels than controls (127 versus 103, p = 0.033). Lower pre-albumin levels (< 23) and underweight body mass index were associated with abnormal total cognitive scores (p = 0.030). Low pre-albumin level (p = .038) was an independent predictor of worse cognition. CONCLUSION Lower pre-albumin was an independent predictor for worse cognition in adolescents post-Fontan. Lower pre-albumin levels may reflect chronic liver changes or protein-losing enteropathy seen in Fontan physiology. These findings highlight the possibility for nutrition-induced cognitive changes.
Collapse
Affiliation(s)
- Nancy A Pike
- University of California Los Angeles, School of Nursing, Los Angeles, CA, USA
- Department of Cardiothoracic Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tamar Avedissian
- American University of Beirut, Hariri School of Nursing, Beirut, Lebanon
| | - Nancy H Halnon
- Department of Pediatric Cardiology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Alan B Lewis
- Department of Pediatric Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Departments of Anesthesiology and Radiological Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Verrall CE, Tran DL, Kasparian NA, Williams T, Oxenham V, Ayer J, Celermajer DS, Cordina RL. Cognitive Functioning and Psychosocial Outcomes in Adults with Complex Congenital Heart Disease: A Cross-sectional Pilot Study. Pediatr Cardiol 2024; 45:529-543. [PMID: 38261061 PMCID: PMC10891231 DOI: 10.1007/s00246-023-03376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
Adults with complex congenital heart disease (CHD) are at risk for cognitive dysfunction. However, associations between cognitive dysfunction and psychosocial outcomes are poorly defined. Between June and November 2022, we prospectively recruited 39 adults with complex CHD who completed a computerized cognitive assessment (Cogstate) and validated psychosocial scales measuring psychological distress, health-related quality of life (HRQOL), and resilience. Participants had a mean age of 36.4 ± 11.2 years. Over half (62%) were women, most (79%) had complex biventricular CHD, and 21% had Fontan physiology. Prevalence of cognitive dysfunction was greatest in the domains of attention (29%), working memory (25%), and psychomotor speed (21%). Adjusting for age and sex, Pearson partial correlations between Cogstate z-scores and self-reported cognitive problems were small. Participants who lived in the most disadvantaged areas and those with a below-average annual household income had lower global cognitive z-scores (p = 0.02 and p = 0.03, respectively). Two-thirds (64%) reported elevated symptoms of depression, anxiety, and/or stress. Small correlations were observed between psychological distress and cognitive performance. Greater resilience was associated with lower psychological distress (r ≥ -0.5, p < 0.001) and higher HRQOL (r = 0.33, p = 0.02). Our findings demonstrate that adults with complex CHD have a high risk of cognitive dysfunction, though may not recognize or report their cognitive challenges. Lower socioeconomic status may be an indicator for those at risk of poorer cognitive functioning. Psychological distress is common though may not be a strong correlate of performance-based cognitive functioning. Formal cognitive evaluation in this patient population is essential. Optimizing resilience may be a protective strategy to minimize psychological distress and bolster HRQOL.
Collapse
Affiliation(s)
- Charlotte E Verrall
- The University of Sydney School of Medicine, Sydney, NSW, Australia.
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia.
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Derek L Tran
- The University of Sydney School of Medicine, Sydney, NSW, Australia
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, NSW, Australia
| | - Nadine A Kasparian
- Heart and Mind Wellbeing Center, Heart Institute and Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tracey Williams
- Kids Rehab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Vincent Oxenham
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Julian Ayer
- The University of Sydney School of Medicine, Sydney, NSW, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - David S Celermajer
- The University of Sydney School of Medicine, Sydney, NSW, Australia
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Rachael L Cordina
- The University of Sydney School of Medicine, Sydney, NSW, Australia
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
3
|
Phillips K, Callaghan B, Rajagopalan V, Akram F, Newburger JW, Kasparian NA. Neuroimaging and Neurodevelopmental Outcomes Among Individuals With Complex Congenital Heart Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:2225-2245. [PMID: 38030353 DOI: 10.1016/j.jacc.2023.09.824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023]
Abstract
Although neuroimaging advances have deepened our understanding of brain health in individuals with congenital heart disease (CHD), it is less clear how neuroimaging findings relate to neurodevelopmental and mental health outcomes across the lifespan. We systematically synthesized and critically evaluated evidence on associations between neuroimaging and neurodevelopmental, neurocognitive, psychiatric, or behavioral outcomes among individuals with transposition of great arteries or single-ventricle CHD (Protocol CRD42021229617). Six databases were searched and 45 papers from 25 unique studies were identified. Structural brain injury was generally linked to poorer neurodevelopment in infancy. Brain volumes and microstructural and functional brain changes appear linked to neurocognitive outcomes, including deficits in attention, learning, memory, and executive function in children and adolescents. Fetal neuroimaging studies were limited. Four papers investigated psychiatric outcomes; none found associations with neuroimaging. Multicenter, longitudinal studies incorporating functional neuroimaging and mental health outcomes are much-needed to inform early neuroprotective and therapeutic strategies in CHD.
Collapse
Affiliation(s)
- Katelyn Phillips
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Bridget Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Vidya Rajagopalan
- Department of Radiology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Farah Akram
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadine A Kasparian
- Heart and Mind Wellbeing Center, Heart Institute and the Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Newell AJ, Patisaul HB. Developmental organophosphate flame retardant exposure disrupts adult hippocampal neurogenesis in Wistar rats. Neurotoxicology 2023; 99:104-114. [PMID: 37783313 PMCID: PMC10842265 DOI: 10.1016/j.neuro.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Organophosphate flame retardant (OPFR) contamination is ubiquitous and bio-monitoring studies have shown that human exposure is widespread and may be unavoidable. OPFRs bear structural similarities to known neurotoxicants such as organophosphate insecticides and have been shown to have both endocrine disrupting and developmental neurotoxic effects. The perinatal period in rodents represents a critical period in the organization of the developing nervous system and insults during this time can impart profound changes on the trajectory of neural development and function, lasting into adulthood. Adult hippocampal neurogenesis (AHN) facilitates dentate gyrus function and broader hippocampal circuit activity in adults; however, the neurogenic potential of this process in adulthood is vulnerable to disruption by exogenous factors during early life. We sought to assess the impact of OPFRs on AHN in offspring of dams exposed during gestation and lactation. Results indicate that developmental OPFR exposure has significant, sex specific impacts on multiple markers of AHN in the dentate gyrus of rats. In males, OPFR exposure significantly reduced the number of neural progenitors the number of new/immature neurons and reduced dentate gyrus volume. In females, exposure increased the number of neural progenitors, decreased the number of new/immature neurons, but had no significant effect on dentate gyrus volume. These results further elucidate the developmental neurotoxic properties of OPFRs, emphasize the long-term impact of early life OPFR exposure on neural processes, and highlight the importance of including sex as a biological variable in neurotoxicology research.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Brossard-Racine M, Panigrahy A. Structural Brain Alterations and Their Associations With Function in Children, Adolescents, and Young Adults With Congenital Heart Disease. Can J Cardiol 2023; 39:123-132. [PMID: 36336305 DOI: 10.1016/j.cjca.2022.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Most neonates who receive surgery for complex congenital heart disease (CHD) will survive well into adulthood, however, many of them will face functional challenges at one point during their life as a consequence of their atypical neurodevelopment. Recent advances in neuroscience and the increasing accessibility of magnetic resonance imaging have allowed numerous studies to identify the nature and extent of the brain alterations that are particular to survivors with CHD. Nevertheless, and considering that the range of outcomes is broad in this population, the functional consequences of these brain differences is not always evident. In this review, we summarize the present state of knowledge regarding the structure-function relationships evaluated in children, adolescents, and young adults with CHD using structural magnetic resonance imaging. Overall smaller total and regional brain volume, as well as lower fractional anisotropy in numerous brain regions, were frequently associated with lower cognitive outcomes including executive functioning and memory in adolescents and young adults with CHD. However, we identify several gaps in knowledge including the limited number of prospective investigations involving neonatal imaging and follow-up during childhood or adolescence, as well as the need for studies that evaluate a broader range of functional outcomes and not only the cognitive abilities. Future interdisciplinary investigations using multimodal imaging techniques could help address these gaps.
Collapse
Affiliation(s)
- Marie Brossard-Racine
- Advances in Brain and Child Development Research Laboratory, Research Institute of McGill University Health Center - Child Heald and Human Development, and School of Physical and Occupational Therapy, Department of Pediatrics - Division of Neonatology and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Ashok Panigrahy
- Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, and Clinical and Translational Imaging Research, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Memory Problems in Children With Congenital Heart Disease: A Narrative Review. J Neurosurg Anesthesiol 2023; 35:136-141. [PMID: 36745178 DOI: 10.1097/ana.0000000000000880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Care for congenital heart diseases (CHD) has improved significantly over the past several decades, and children with CHD are now surviving into adulthood. Cognitive and behavioral problems affect children with CHD more than healthy peers. A review of performance on neuropsychological memory tasks has not been reported. We aimed to summarize the published literature on memory problems in people with CHD. METHODS We searched Pubmed, Medline, and PsycINFO from January 1, 1986 to March 22, 2022 to reflect modern care for people with CHD. Our inclusion criteria were randomized controlled trials or observational studies that included children with CHD older than age 3 years, which reported the results of at least 1 neuropsychological test of memory in the CHD group. Our exclusion criteria were studies that included heart transplant recipients and studies that included children who required extracorporeal membrane oxygenation. RESULTS Thirty-one studies that met our inclusion criteria and avoided exclusion criteria were included in this review. Several studies reported deficits in the subdomains of short-term and long-term memory and visual and verbal memory, though we found substantial heterogeneity across studies. The most likely subdomain to be affected in children with CHD appears to be short-term visual memory. CONCLUSIONS There is likely an increased risk of memory problems for children and adults with CHD. We were unable to quantify the risk of memory problems due to the heterogeneity of published studies. Future research should make efforts to account for confounding variables and standardize outcome measures.
Collapse
|
7
|
Verrall CE, Tran DL, Yang JYM, Lubans DR, Winlaw DS, Ayer J, Celermajer D, Cordina R. Exercise as therapy for neurodevelopmental and cognitive dysfunction in people with a Fontan circulation: A narrative review. Front Pediatr 2023; 11:1111785. [PMID: 36861078 PMCID: PMC9969110 DOI: 10.3389/fped.2023.1111785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
People with a Fontan circulation are at risk of neurodevelopmental delay and disability, and cognitive dysfunction, that has significant implications for academic and occupational attainment, psychosocial functioning, and overall quality of life. Interventions for improving these outcomes are lacking. This review article discusses current intervention practices and explores the evidence supporting exercise as a potential intervention for improving cognitive functioning in people living with a Fontan circulation. Proposed pathophysiological mechanisms underpinning these associations are discussed in the context of Fontan physiology and avenues for future research are recommended.
Collapse
Affiliation(s)
- Charlotte Elizabeth Verrall
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Derek Lee Tran
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Revalds Lubans
- Centre for Active Living and Learning, College of Human and Social Futures, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - David Scott Winlaw
- Cardiothoracic Surgery, the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Julian Ayer
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David Celermajer
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia
| | - Rachael Cordina
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia.,Heart Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Vandiver MS, Roy B, Mahmud F, Lavretsky H, Kumar R. Functional comorbidities and brain tissue changes before and after lung transplant in adults. Front Cell Neurosci 2022; 16:1015568. [DOI: 10.3389/fncel.2022.1015568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
BackgroundAdults undergoing lung transplant, as a lifesaving treatment for end stage lung disease, exhibit high levels of peri-operative neurocognitive dysfunction in multiple domains, including delirium, cognition, and autonomic deficits. These complications impact healthcare costs, quality of life, and patient outcomes. Post-operative symptoms likely result from loss of brain tissue integrity in sites mediating such regulatory functions. Our aim in this study was to examine peri-operative neurocognitive dysfunction and brain tissue changes after lung transplant in adults.MethodsWe retrospectively examined the UCLA lung transplant database to identify 114 lung transplant patients with pre-operative clinical and neurocognitive data. Of 114 patients, 9 lung transplant patients had pre- and post-transplant brain magnetic resonance imaging. Clinical and neurocognitive data were summarized for all subjects, and brain tissue volume changes, using T1-weighted images, before and after transplant were examined. T1-weighted images were partitioned into gray matter (GM)-tissue type, normalized to a common space, smoothed, and the smoothed GM-volume maps were compared between pre- and post-transplant (paired t-tests; covariate, age; SPM12, p < 0.005).ResultsIncreased comorbidities, including the diabetes mellitus (DM), hypertension, kidney disease, and sleep disordered breathing, as well as higher rates of neurocognitive dysfunction were observed in the lung transplant patients, with 41% experiencing post-operative delirium, 49% diagnosed with a mood disorder, and 25% of patients diagnosed with cognitive deficits, despite incomplete documentation. Similarly, high levels of delirium, cognitive dysfunction, and mood disorder were noted in a subset of patients used for brain MRI evaluation. Significantly decreased GM volumes emerged in multiple brain regions, including the frontal and prefrontal, parietal, temporal, bilateral anterior cingulate and insula, putamen, and cerebellar cortices.ConclusionAdults undergoing lung transplant often show significant pre-operative comorbidities, including diabetes mellitus, hypertension, and chronic kidney disease, as well as neurocognitive dysfunction. In addition, patients with lung transplant show significant brain tissue changes in regions that mediate cognition, autonomic, and mood functions. The findings indicate a brain structural basis for many enhanced post-operative symptoms and suggest a need for brain tissue protection in adults undergoing lung transplant to improve health outcomes.
Collapse
|
9
|
Aleksonis HA, King TZ. Relationships Among Structural Neuroimaging and Neurocognitive Outcomes in Adolescents and Young Adults with Congenital Heart Disease: A Systematic Review. Neuropsychol Rev 2022; 33:432-458. [PMID: 35776371 DOI: 10.1007/s11065-022-09547-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 10/17/2022]
Abstract
Congenital heart disease (CHD) is the most common cause of major congenital anomalies in the world. Disruptions to brain development in this population may impact cognitive outcomes. As individuals with CHD age, understanding of long-term neurocognitive and brain outcomes is essential. Synthesis of the current literature of brain-behavior relationships in adolescents and young adults with CHD is needed to understand long-term outcomes and identify literature gaps. This systematic review summarizes and integrates the current literature on the relationship between structural neuroimaging and neurocognitive outcomes in adolescents and young adults with CHD. Included papers were published through August 2, 2021. Searches were conducted on Pubmed and APA PsycInfo. Studies were eligible for inclusion if they evaluated adolescents or young adults (ages 10-35) with CHD, and without genetic comorbidity. Studies explored relationships among structural neuroimaging and neurocognitive outcomes, were in English, and were an empirical research study. A total of 22 papers were included in the current review. Data from each study was extracted and included in a table for comparison along with a systematic assessment of study quality. Results suggest worse brain outcomes (i.e., brain abnormality, reduced volume, lower fractional anisotropy, and brain topology) are related to poorer performance in neuropsychological domains of intelligence, memory, and executive functioning. Consistently, poorer memory performance was related to lower hippocampal and temporal region volumes. Statistically significant brain-behavior relationships in adolescents and young adults with CHD are generally observed across studies but there is a lack of consistency in investigated neuropsychological constructs and brain regions to be able to make specific conclusions. Further research with adult samples of CHD is needed to better understand the long-term impacts of early neurological insult.
Collapse
Affiliation(s)
- Holly A Aleksonis
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ritmeester E, Veger VA, van der Ven JPG, van Tussenbroek GMJW, van Capelle CI, Udink ten Cate FEA, Helbing WA. Fontan Circulation Associated Organ Abnormalities Beyond the Heart, Lungs, Liver, and Gut: A Systematic Review. Front Cardiovasc Med 2022; 9:826096. [PMID: 35391839 PMCID: PMC8981209 DOI: 10.3389/fcvm.2022.826096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction Patients with a Fontan circulation are at risk for sequelae of Fontan physiology during follow-up. Fontan physiology affects all organ systems and an overview of end-organ damage is needed. Methods We performed a systematic review of abnormalities in multiple organ systems for patients with a longstanding Fontan circulation. We searched online databases for articles describing abnormalities in multiple organ systems. Cardio-pulmonary abnormalities, protein losing enteropathy, and Fontan associated liver disease have already extensively been described and were excluded from this systematic review. Results Our search returned 5,704 unique articles. After screening, we found 111 articles relating to multiple organ systems. We found abnormalities in, among others, the nervous system, pituitary, kidneys, and musculoskeletal system. Pituitary edema—relating to the unique pituitary vasculature- may affect the thyroid axis. Renal dysfunction is common. Creatinine based renal function estimates may be inappropriate due to myopenia. Both lean muscle mass and bone mineral density are decreased. These abnormalities in multiple organ systems may be related to Fontan physiology, cyanosis, iatrogenic factors, or lifestyle. Conclusions Health care providers should be vigilant for hypothyroidism, visual or hearing deficits, and sleep disordered breathing in Fontan patients. We recommend including cystatin C for assessment of renal function. This review may aid health care providers and guide future research. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021232461, PROSPERO, identifier: CRD42021232461.
Collapse
Affiliation(s)
- Evi Ritmeester
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Veerle A. Veger
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Jelle P. G. van der Ven
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | | | - Carine I. van Capelle
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Floris E. A. Udink ten Cate
- Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Willem A. Helbing
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Willem A. Helbing
| |
Collapse
|
11
|
Selvanathan T, Smith JM, Miller SP, Field TS. Neurodevelopment and cognition across the lifespan in patients with single ventricle physiology: Abnormal brain maturation and accumulation of brain injuries. Can J Cardiol 2022; 38:977-987. [DOI: 10.1016/j.cjca.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
|