1
|
Kim G, Khan RA, Tai Y, Shahsavarani S, Husain FT. Gray matter volumetric changes in tinnitus: The impact of hearing loss and severity. Brain Res 2024; 1846:149264. [PMID: 39369776 DOI: 10.1016/j.brainres.2024.149264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Tinnitus is a phantom auditory sensation that commonly co-occurs with hearing loss. Both tinnitus and hearing loss can impact the quality of life, emotional well-being, and cognitive functioning of the affected individuals. While previous studies have highlighted structural alterations in hearing loss and/or tinnitus, the fundamental neural mechanisms underpinning tinnitus severity remain poorly understood. In this study, we conducted a voxel-based morphometry to investigate gray matter (GM) volume differences among groups of participants with varying tinnitus severity and hearing status, and controls within a large sample. We observed reduced GM volume in the left anterior insula and right planum polare in participants with hearing loss, regardless of their tinnitus status, compared to normal hearing controls. We noted decreased GM volume in the bilateral anterior and posterior insula for those with tinnitus and normal hearing compared to a normal hearing control group. Further, the tinnitus with hearing loss group showed decreased GM volume in the left planum polare, left inferior temporal gyrus, bilateral anterior temporal gyri, and right superior frontal gyrus compared to the normal hearing control group, suggesting a combined effect of hearing loss and tinnitus. While tinnitus severity did not show a significant overall effect, there was a significant positive correlation between tinnitus distress and GM volume in bilateral planum polare. Our findings enhance the understanding of structural brain changes related to hearing loss and tinnitus, and advance the overall knowledge of tinnitus pathophysiology, which can contribute to the development of more effective treatments for tinnitus.
Collapse
Affiliation(s)
- Gibbeum Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yihsin Tai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Speech Pathology and Audiology, Ball State University, Muncie, IN 47306, United States
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Audiology, San Jose State University, San Jose, CA 95192, United States
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States.
| |
Collapse
|
2
|
Xu XM, Liu Y, Feng Y, Xu JJ, Gao J, Salvi R, Wu Y, Yin X, Chen YC. Degree centrality and functional connections in presbycusis with and without cognitive impairments. Brain Imaging Behav 2022; 16:2725-2734. [DOI: 10.1007/s11682-022-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
3
|
Li W, Ma X, Wang Q, He X, Qu X, Zhang L, Chen L, Liu Z. Intrinsic Network Changes in Bilateral Tinnitus Patients with Cognitive Impairment: A Resting-State Functional MRI Study. Brain Sci 2022; 12:brainsci12081049. [PMID: 36009112 PMCID: PMC9405767 DOI: 10.3390/brainsci12081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have found a link between tinnitus and cognitive impairment, even leading to dementia. However, the mechanisms underlying this association are not clear. The purpose of this study was to explore intrinsic network changes in tinnitus and hearing loss patients with cognitive disorders. We included 17 individuals with bilateral idiopathic tinnitus, hearing loss, and cognitive impairment (PA) and 21 healthy controls. We identified resting-state networks (RSNs) and measured intra-network functional connectivity (FC) values via independent component analysis (ICA). We also evaluated correlations between RSNs and clinical characteristics. Compared with the healthy controls, the PA group showed decreased connectivity within the ventral attention network, dorsal attention network (DAN), visual network, left frontoparietal network, right frontoparietal network, sensorimotor network, and increased connectivity within the executive control network. MoCA (Montreal Cognitive Assessment) scores were negatively correlated with the FC values for left calcarine within the DAN. We identified abnormal intrinsic connectivity in several brain networks, mainly involving cognitive control, vision, sensorimotor function, and the cerebellum, in tinnitus patients with cognitive impairment. It may be possible to use the FC strength of the left calcarine within the DAN as an imaging marker to predict cognitive impairment in tinnitus patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Xiaobo Ma
- Department of Otolaryngology Head and Neck Surgery, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Qian Wang
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Xueying He
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
- Department of Radiology, Medical School of Nanjing University, Afliated Drum Tower Hospital, Nanjing 210008, China
| | - Xiaoxia Qu
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Lirong Zhang
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Lanyue Chen
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Zhaohui Liu
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
- Correspondence: ; Tel.: +86-10-582-680-34
| |
Collapse
|
4
|
Jaroszynski C, Job A, Jedynak M, David O, Delon-Martin C. Tinnitus Perception in Light of a Parietal Operculo-Insular Involvement: A Review. Brain Sci 2022; 12:334. [PMID: 35326290 PMCID: PMC8946618 DOI: 10.3390/brainsci12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
In tinnitus literature, researchers have increasingly been advocating for a clearer distinction between tinnitus perception and tinnitus-related distress. In non-bothersome tinnitus, the perception itself can be more specifically investigated: this has provided a body of evidence, based on resting-state and activation fMRI protocols, highlighting the involvement of regions outside the conventional auditory areas, such as the right parietal operculum. Here, we aim to conduct a review of available investigations of the human parietal operculo-insular subregions conducted at the microscopic, mesoscopic, and macroscopic scales arguing in favor of an auditory-somatosensory cross-talk. Both the previous literature and new results on functional connectivity derived from cortico-cortical evoked potentials show that these subregions present a dense tissue of interconnections and a strong connectivity with auditory and somatosensory areas in the healthy brain. Disrupted integration processes between these modalities may thus result in erroneous perceptions, such as tinnitus. More precisely, we highlight the role of a subregion of the right parietal operculum, known as OP3 according to the Jülich atlas, in the integration of auditory and somatosensory representation of the orofacial muscles in the healthy population. We further discuss how a dysfunction of these muscles could induce hyperactivity in the OP3. The evidence of direct electrical stimulation of this area eliciting auditory hallucinations further suggests its involvement in tinnitus perception. Finally, a small number of neuroimaging studies of therapeutic interventions for tinnitus provide additional evidence of right parietal operculum involvement.
Collapse
Affiliation(s)
- Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| | - Agnès Job
- Institut de Recherche Biomédicale des Armées, IRBA, 91220 Brétigny-sur-Orge, France;
| | - Maciej Jedynak
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Olivier David
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| |
Collapse
|
5
|
Zhou GP, Chen YC, Li WW, Wei HL, Yu YS, Zhou QQ, Yin X, Tao YJ, Zhang H. Aberrant functional and effective connectivity of the frontostriatal network in unilateral acute tinnitus patients with hearing loss. Brain Imaging Behav 2021; 16:151-160. [PMID: 34296381 DOI: 10.1007/s11682-021-00486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The present study combined resting-state functional connectivity (FC) and Granger causality analysis (GCA) to explore frontostriatal network dysfunction in unilateral acute tinnitus (AT) patients with hearing loss. METHODS The participants included 42 AT patients and 43 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging (fMRI) scans. Based on the seed regions in the frontostriatal network, FC and GCA were conducted between the AT patients and HC subjects. Correlation analyses were used to examine correlations among altered FC values, GCA values, and clinical features in AT patients. RESULTS Compared with HCs, AT patients showed a general reduction in FC between the seed regions in the frontostriatal network and nonauditory areas, including the frontal cortices, midcingulate cortex (MCC), supramarginal gyrus, and postcentral gyrus (PoCG). Using the GCA algorithm, we detected abnormal effective connectivity (EC) in the inferior occipital gyrus, MCC, Cerebelum_Crus1, and PoCG. Furthermore, correlations between disrupted FC/EC and clinical characteristics, especially tinnitus distress-related characteristics, were found in AT patients. CONCLUSIONS Our work demonstrated abnormal FC and EC between the frontostriatal network and several nonauditory regions in AT patients with hearing loss, suggesting that multiple large-scale network dysfunctions and interactions are involved in the perception of tinnitus. These findings not only enhance the current understanding of the frontostriatal network in tinnitus but also serve as a reminder of the importance of focusing on tinnitus at an early stage.
Collapse
Affiliation(s)
- Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, China
| | - Wang-Wei Li
- Department of E.N.T., The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, China
| | - Yue-Jin Tao
- Department of E.N.T., The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China.
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, Gushan Road, Nanjing, 211100, Jiangsu Province, China.
| |
Collapse
|
6
|
Chen Q, Lv H, Wang Z, Wei X, Zhao P, Yang Z, Gong S, Wang Z. Brain Structural and Functional Reorganization in Tinnitus Patients Without Hearing Loss After Sound Therapy: A Preliminary Longitudinal Study. Front Neurosci 2021; 15:573858. [PMID: 33776630 PMCID: PMC7991098 DOI: 10.3389/fnins.2021.573858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Sound therapy is one of the most common first-line treatments for idiopathic tinnitus. We aimed to investigate the brain structural and functional alterations between patients with idiopathic tinnitus without hearing loss (HL) and healthy controls (HCs) and between patients before and after sound therapy (narrow band noise). Structural and resting-state functional images were acquired from 13 tinnitus patients without HL and 18 HCs before and after 6 months of narrow band sound therapy (only patients received the treatment). Voxel-based morphometry (VBM) and independent component analysis (ICA) were conducted to separately investigate the brain structural and functional changes. Associations between brain changes and clinical variables were also performed. After the treatment, the % improvement of THI score was −1.30% (± 63.40%). Compared with HCs, tinnitus patients showed gray matter and white matter atrophy in the left middle temporal gyrus at baseline, and the gray matter volume was further reduced after the treatment. The patients also showed increased white matter volume in the cingulum (cingulate), right calcarine, left rolandic operculum, and left parietal and frontal lobes. Additionally, compared with HCs, tinnitus patients exhibited positive [medial visual network (mVN) and sensorimotor network (SMN), mVN and auditory network (AN)] and negative [mVN and lateral visual network (lVN)] internetwork functional connectivity (FC) at baseline and negative [left frontoparietal network (LFPN) and dorsal attention network (DAN), AN and posterior default mode network (pDMN)] internetwork FC after the narrow band sound therapy. The patients also showed negative [LFPN and right frontoparietal network (RFPN), LFPN and RFPN, anterior default mode network (aDMN) and AN, aDMN and DAN] internetwork FC after the treatment when compared with baseline. Our findings suggest that although the outcomes of idiopathic tinnitus patients without HL were not very good when the improvement of THI scores was used as an evaluation indicator, the patients experienced significant differences in auditory-related and non-auditory-related brain reorganization before and after the narrow band sound therapy, that is, sound therapy may have a significant effect on brain reorganization in patients with idiopathic tinnitus. This study may provide some new useful information for the understanding of mechanisms underlying idiopathic tinnitus.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wei X, Lv H, Chen Q, Wang Z, Liu C, Zhao P, Gong S, Yang Z, Wang Z. Neuroanatomical Alterations in Patients With Tinnitus Before and After Sound Therapy: A Combined VBM and SCN Study. Front Hum Neurosci 2021; 14:607452. [PMID: 33536889 PMCID: PMC7847901 DOI: 10.3389/fnhum.2020.607452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Many neuroanatomical alterations have been detected in patients with tinnitus in previous studies. However, little is known about the morphological and structural covariance network (SCN) changes before and after long-term sound therapy. This study aimed to explore alterations in brain anatomical and SCN changes in patients with idiopathic tinnitus using voxel-based morphometry (VBM) analysis 24 weeks before and after sound therapy. Thirty-three tinnitus patients underwent magnetic resonance imaging scans at baseline and after 24 weeks of sound therapy. Twenty-six age- and sex-matched healthy control (HC) individuals also underwent two scans over a 24-week interval; 3.0T MRI and high-resolution 3D structural images were acquired with a 3D-BRAVO pulse sequence. Structural image data preprocessing was performed using the VBM8 toolbox. The Tinnitus Handicap Inventory (THI) score was assessed for the severity of tinnitus before and after treatment. Two-way mixed model analysis of variance (ANOVA) and post hoc analyses were performed to determine differences between the two groups (patients and HCs) and between the two scans (at baseline and on the 24th week). Student-Newman-Keuls (SNK) tests were used in the post hoc analysis. Interaction effects between the two groups and the two scans demonstrated significantly different gray matter (GM) volume in the right parahippocampus gyrus, right caudate, left superior temporal gyrus, left cuneus gyrus, and right calcarine gyrus; we found significantly decreased GM volume in the above five brain regions among the tinnitus patients before sound therapy (baseline) compared to that in the HC group. The 24-week sound therapy group demonstrated significantly greater brain volume compared with the baseline group among these brain regions. We did not find significant differences in brain regions between the 24-week sound therapy and HC groups. The SCN results showed that the left superior temporal gyrus and left rolandic operculum were significantly different in nodal efficiency, nodal degree centrality, and nodal betweenness centrality after FDR correction. This study characterized the effect of sound therapy on brain GM volume, especially in the left superior temporal lobe. Notably, sound therapy had a normalizing effect on tinnitus patients.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Job A, Jaroszynski C, Kavounoudias A, Jaillard A, Delon-Martin C. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study. Brain Connect 2020; 10:279-291. [DOI: 10.1089/brain.2019.0712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Agnès Job
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny s/Orge, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Chloé Jaroszynski
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | - Chantal Delon-Martin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
9
|
Cai Y, Xie M, Su Y, Tong Z, Wu X, Xu W, Li J, Zhao F, Dang C, Chen G, Lan L, Shen J, Zheng Y. Aberrant Functional and Causal Connectivity in Acute Tinnitus With Sensorineural Hearing Loss. Front Neurosci 2020; 14:592. [PMID: 32714128 PMCID: PMC7340148 DOI: 10.3389/fnins.2020.00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The neural bases in acute tinnitus remains largely undetected. The objective of this study was to identify the alteration of the brain network involved in patients with acute tinnitus and hearing loss. Methods Acute tinnitus patients (n = 24) with hearing loss and age-, sex-, education-matched healthy controls (n = 21) participated in the current study and underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Regional homogeneity and amplitude of low-frequency fluctuation were used to investigate the local spontaneous neural activity and functional connectivity (FC), and Granger causality analysis (GCA) was used to analyze the undirected and directed connectivity of brain regions. Results Compared with healthy subjects, acute tinnitus patients had a general reduction in FC between auditory and non-auditory brain regions. Based on FC analysis, the superior temporal gyrus (STG) revealed reduced undirected connectivity with non-auditory brain regions including the amygdala (AMYG), nucleus accumbens (NAc), the cerebellum, and postcentral gyrus (PoCG). Using the GCA algorithm, increased effective connectivity from the right AMYG to the right STG, and reduced connectivity from the right PoCG to the left NAc was observed in acute tinnitus patients with hearing loss. The pure-tone threshold was positively correlated with FC between the AMYG and STG, and negatively correlated with FC between the left NAc and the right PoCG. In addition, a negative association between the GCA value from the right PoCG to the left NAc and the THI scores was observed. Conclusion Acute tinnitus patients have aberrant FC strength and causal connectivity in both the auditory and non-auditory cortex, especially in the STG, AMYG, and NAc. The current findings will provide a new perspective for understanding the neuropathophysiological mechanism in acute tinnitus.
Collapse
Affiliation(s)
- Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Mingwei Xie
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Su
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopeng Tong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenchao Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Fei Zhao
- Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, United Kingdom.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Caiping Dang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Psychology, Guangzhou Medical University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Liping Lan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Pérez-Bellido A, Anne Barnes K, Crommett LE, Yau JM. Auditory Frequency Representations in Human Somatosensory Cortex. Cereb Cortex 2019; 28:3908-3921. [PMID: 29045579 DOI: 10.1093/cercor/bhx255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Indexed: 01/01/2023] Open
Abstract
Recent studies have challenged the traditional notion of modality-dedicated cortical systems by showing that audition and touch evoke responses in the same sensory brain regions. While much of this work has focused on somatosensory responses in auditory regions, fewer studies have investigated sound responses and representations in somatosensory regions. In this functional magnetic resonance imaging (fMRI) study, we measured BOLD signal changes in participants performing an auditory frequency discrimination task and characterized activation patterns related to stimulus frequency using both univariate and multivariate analysis approaches. Outside of bilateral temporal lobe regions, we observed robust and frequency-specific responses to auditory stimulation in classically defined somatosensory areas. Moreover, using representational similarity analysis to define the relationships between multi-voxel activation patterns for all sound pairs, we found clear similarity patterns for auditory responses in the parietal lobe that correlated significantly with perceptual similarity judgments. Our results demonstrate that auditory frequency representations can be distributed over brain regions traditionally considered to be dedicated to somatosensation. The broad distribution of auditory and tactile responses over parietal and temporal regions reveals a number of candidate brain areas that could support general temporal frequency processing and mediate the extensive and robust perceptual interactions between audition and touch.
Collapse
Affiliation(s)
- Alexis Pérez-Bellido
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, USA
| | - Kelly Anne Barnes
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, USA
| | - Lexi E Crommett
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
11
|
Xu XM, Jiao Y, Tang TY, Zhang J, Salvi R, Teng GJ. Inefficient Involvement of Insula in Sensorineural Hearing Loss. Front Neurosci 2019; 13:133. [PMID: 30842724 PMCID: PMC6391342 DOI: 10.3389/fnins.2019.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/06/2019] [Indexed: 01/22/2023] Open
Abstract
The insular cortex plays an important role in multimodal sensory processing, audio-visual integration and emotion; however, little is known about how the insula is affected by auditory deprivation due to sensorineural hearing loss (SNHL). To address this issue, we used structural and functional magnetic resonance imaging to determine if the neural activity within the insula and its interregional functional connectivity (FC) was disrupted by SNHL and if these alterations were correlated clinical measures of emotion and cognition. Thirty-five SNHL subjects and 54 Controls enrolled in our study underwent auditory evaluation, neuropsychological assessments, functional and structure MRI, respectively. Twenty five patients and 20 Controls underwent arterial spin labeling scanning. FC of six insula subdivisions were assessed and the FC results were compared to the neuropsychological tests. Interregional connections were also compared among insula-associated networks, including salience network (SN), default mode network (DMN), and central executive network (CEN). Compared to Controls, SNHL subjects demonstrated hyperperfusion in the insula and significantly decreased FC between some insula subdivisions and other brain regions, including thalamus, putamen, precentral gyrus, postcentral gyrus, mid-cingulate cortex, dorsolateral prefrontal cortex, rolandic operculum. Anxiety, depression and cognitive impairments were correlated with FC values. Abnormal interactions among SN, DMN, and CEN were observed in SNHL group. Our result provides support for the "inefficient high-order control" theory of the insula in which the auditory deprivation caused by SNHL contributes to impaired sensory integration and central deficits in emotional and cognitive processing.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
12
|
Rosemann S, Thiel CM. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment. Neuroimage 2018; 175:425-437. [PMID: 29655940 DOI: 10.1016/j.neuroimage.2018.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022] Open
Abstract
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss.
Collapse
Affiliation(s)
- Stephanie Rosemann
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Micarelli A, Chiaravalloti A, Viziano A, Danieli R, Schillaci O, Alessandrini M. Early cortical metabolic rearrangement related to clinical data in idiopathic sudden sensorineural hearing loss. Hear Res 2017; 350:91-99. [PMID: 28460253 DOI: 10.1016/j.heares.2017.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Results in studies concerning cortical changes in idiopathic sudden sensorineural hearing loss (ISSNHL) are not homogeneous, in particular due to the different neuroimaging techniques implemented and the diverse stages of ISSNHL studied. Considering the recent advances in state-of-the-art positron emission tomography (PET) cameras, the aim of this study was to gain more insight into the neuroanatomical differences associated with the earliest stages of unilateral ISSNHL and clinical-perceptual performance changes. After an audiological examination including the mean auditory threshold (mean AT), mean speech discrimination score (mean SDS) and Tinnitus Handicap Inventory (THI), 14 right-handed ISSNHL patients underwent brain [18F]fluorodeoxyglucose (FDG)-PET within 72 h of the onset of symptoms. When compared to an homogeneous group of 35 healthy subjects by means of statistical parametric mapping, a relative increase in FDG uptake was found in the right superior and medial frontal gyrus as well as in the right anterior cingulate cortex in ISSNHL patients. Conversely, the same group showed a significant relative decrease in FDG uptake in the right middle temporal, precentral and postcentral gyrus as well as in the left posterior cingulate cortex, left lingual, superior, middle temporal and middle frontal gyrus and in the left insula. Regression analysis showed a positive correlation between mean THI and glucose consumption in the right anterior cingulate cortex and a positive correlation between mean SDS and glucose consumption in the left precentral gyrus. The relative changes in FDG uptake found in these brain regions and the positive correlation with mean SDS and THI scores in ISSNHL could possibly highlight new aspects of cerebral rearrangement, contributing to further explain changes in those functions that support speech recognition during the sudden impairment of unilateral auditory input.
Collapse
Affiliation(s)
- Alessandro Micarelli
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Otolaryngology Unit, Italy; University of Rome Tor Vergata, Department of Systems Medicine, Neuroscience Unit, Italy.
| | - Agostino Chiaravalloti
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Nuclear Medicine Unit, Italy
| | - Andrea Viziano
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Otolaryngology Unit, Italy
| | - Roberta Danieli
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Nuclear Medicine Unit, Italy
| | - Orazio Schillaci
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Nuclear Medicine Unit, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Marco Alessandrini
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Otolaryngology Unit, Italy
| |
Collapse
|
14
|
Elgoyhen AB, Langguth B, De Ridder D, Vanneste S. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 2015; 16:632-42. [DOI: 10.1038/nrn4003] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Job A, Hamery P, De Mezzo S, Fialaire JC, Roux A, Untereiner M, Cardinale F, Michel H, Klein C, Belcourt B. Rifle impulse noise affects middle-ear compliance in soldiers wearing protective earplugs. Int J Audiol 2015; 55:30-7. [DOI: 10.3109/14992027.2015.1070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Cottraux J, Lecaignard F, Yao SN, De Mey-Guillard C, Haour F, Delpuech C, Servan-Schreiber D. Enregistrement magnéto-encéphalographique (MEG) de réminiscences du trauma chez des femmes souffrant de stress post-traumatique : une étude pilote. Encephale 2015; 41:202-8. [DOI: 10.1016/j.encep.2014.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 11/27/2013] [Indexed: 11/15/2022]
|
17
|
Krick CM, Grapp M, Daneshvar-Talebi J, Reith W, Plinkert PK, Bolay HV. Cortical reorganization in recent-onset tinnitus patients by the Heidelberg Model of Music Therapy. Front Neurosci 2015; 9:49. [PMID: 25745385 PMCID: PMC4333796 DOI: 10.3389/fnins.2015.00049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
Pathophysiology and treatment of tinnitus still are fields of intensive research. The neuroscientifically motivated Heidelberg Model of Music Therapy, previously developed by the German Center for Music Therapy Research, Heidelberg, Germany, was applied to explore its effects on individual distress and on brain structures. This therapy is a compact and fast application of nine consecutive 50-min sessions of individualized therapy implemented over 1 week. Clinical improvement and long-term effects over several years have previously been published. However, the underlying neural basis of the therapy's success has not yet been explored. In the current study, the therapy was applied to acute tinnitus patients (TG) and healthy active controls (AC). Non-treated patients were also included as passive controls (PTC). As predicted, the therapeutic intervention led to a significant decrease of tinnitus-related distress in TG compared to PTC. Before and after the study week, high-resolution MRT scans were obtained for each subject. Assessment by repeated measures design for several groups (Two-Way ANOVA) revealed structural gray matter (GM) increase in TG compared to PTC, comprising clusters in precuneus, medial superior frontal areas, and in the auditory cortex. This pattern was further applied as mask for general GM changes as induced by the therapy week. The therapy-like procedure in AC also elicited similar GM increases in precuneus and frontal regions. Comparison between structural effects in TG vs. AC was calculated within the mask for general GM changes to obtain specific effects in tinnitus patients, yielding GM increase in right Heschl's gyrus, right Rolandic operculum, and medial superior frontal regions. In line with recent findings on the crucial role of the auditory cortex in maintaining tinnitus-related distress, a causative relation between the therapy-related GM alterations in auditory areas and the long-lasting therapy effects can be assumed.
Collapse
Affiliation(s)
- Christoph M Krick
- Department for Neuroradiology, Saarland University Hospital Homburg, Germany
| | - Miriam Grapp
- German Center for Music Therapy Research (Victor Dulger Institute) DZM Heidelberg, Germany
| | | | - Wolfgang Reith
- Department for Neuroradiology, Saarland University Hospital Homburg, Germany
| | - Peter K Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital for Ear, Nose, and Throat, University of Heidelberg Heidelberg, Germany
| | - Hans Volker Bolay
- Music Therapy Tinnitus Outpatient Department, German Center for Music Therapy Research (Victor Dulger Institute) DZM Heidelberg, Germany
| |
Collapse
|
18
|
Job A, Jacob R, Pons Y, Raynal M, Kossowski M, Gauthier J, Lombard B, Delon-Martin C. Specific activation of operculum 3 (OP3) brain region during provoked tinnitus-related phantom auditory perceptions in humans. Brain Struct Funct 2014; 221:913-22. [DOI: 10.1007/s00429-014-0944-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
19
|
Perspective of functional magnetic resonance imaging in middle ear research. Hear Res 2013; 301:183-92. [PMID: 23291496 DOI: 10.1016/j.heares.2012.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/26/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
Functional magnetic resonance imaging (MRI) studies have frequently been applied to study sensory system such as vision, language, and cognition, but have proceeded at a considerably slower speed in investigating middle ear and central auditory processing. This is due to several factors, including the intrinsic anatomy of the middle ear system and inherent acoustic noise during acquisition of MRI data. However, accumulating evidences have demonstrated that clarification of some fundamental neural underpinnings of audition associated with middle ear mechanics can be achieved using functional MRI methods. This mini review attempted to take a narrow snapshot of the currently available functional MRI procedures and gave examples of what may be learned about hearing from their application. It is hoped that with these technical advancements, many new high impact applications in audition would follow. In particular, because the fMRI can be used in humans and in animals, fMRI may represent a unique tool that should promote translational research by enabling parallel analyses of physiological and pathological processes in the human and animal auditory system. This article is part of a special issue entitled "MEMRO 2012".
Collapse
|