1
|
Zaman A, Özçelik H, Yücel E, Su Akkan S, Onsinejad T, Mert Yüksel S, Bülbül M. Effect of sex on chronic stress induced alterations in hindbrain catecholaminergic system and autonomic dysfunction resulting in gastrointestinal dysmotility. Brain Res 2024; 1842:149112. [PMID: 38969083 DOI: 10.1016/j.brainres.2024.149112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
It has been reported that the clinical symptoms of functional dyspepsia (FD) exacerbate upon stress while the gender-related factors have been incompletely understood. This study aims to investigate the role of sex in chronic heterotypic stress (CHS)-induced autonomic and gastric motor dysfunction. For CHS, the rats were exposed to the combination of different stressors for 7 consecutive days. Subsequently, electrocardiography was recorded in anesthetized rats to evaluate heart rate variability (HRV) for the determination of autonomic outflow and sympathovagal balance. Solid gastric emptying (GE) was measured in control and CHS-loaded male and female rats. The immunoreactivities of catecholaminergic cell marker tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), corticotropin releasing factor (CRF), and estrogen receptor (ER-α/β) were evaluated in medullary and pontine brainstem sections by immunohistochemistry. Compared with the controls, CHS significantly delayed GE in males but not in females. There was no significant sex-related difference in parasympathetic indicator HF under either control or CHS conditions. Sympathetic indicator LF was significantly higher in control females compared to the males. The higher sympathetic output in females was found to be attenuated upon CHS; in contrast, the elevated sympathetic output was detected in CHS-loaded males. No sex- or stress-related effect was observed on ChAT immunoreactivity in the dorsal motor nucleus of N.vagus (DMV). In males, greater number of TH-ir cells was observed in the caudal locus coeruleus (LC), while they were more densely detected in the rostral LC of females. Regardless of sex, CHS elevated immunoreactivity of TH throughout the LC. Under basal conditions, greater number of TH-ir cells was detected in the rostral ventrolateral medulla (RVLM) of females. In contrast, CHS remarkably increased the number of TH-ir cells in the RVLM of males which was found to be decreased in females. There was no sex-related alteration in TH immunoreactivity in the nucleus tractus solitarius (NTS) of control rats, while CHS affected both sexes in a similar manner. Compared with females, CRF immunoreactivity was prominently observed in control males, while both of which were stimulated by CHS. ER-α/β was found to be co-expressed with TH in the NTS and LC which exhibit no alteration related to either sex or stress status. These results indicate a sexual dimorphism in the catecholaminergic and the CRF system in brainstem which might be involved in the CHS-induced autonomic and visceral dysfunction occurred in males.
Collapse
Affiliation(s)
- Amirali Zaman
- Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | - Elif Yücel
- Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Simla Su Akkan
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Tanaz Onsinejad
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Sadettin Mert Yüksel
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
2
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
3
|
Darvishzadeh Mahani F, Raji-Amirhasani A, Khaksari M, Mousavi MS, Bashiri H, Hajializadeh Z, Alavi SS. Caloric and time restriction diets improve acute kidney injury in experimental menopausal rats: role of silent information regulator 2 homolog 1 and transforming growth factor beta 1. Mol Biol Rep 2024; 51:812. [PMID: 39007943 DOI: 10.1007/s11033-024-09716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Estrogen has a protective impact on acute kidney injury (AKI); moreover, reducing the daily intake of calories impedes developing diseases. The present study aimed to determine the effects of calorie restriction (CR) and time restriction (TR) diets on the expression of silent information regulator 2 homolog 1 (SIRT1), transforming growth factor beta 1 (TGF-β1), and other indicators in the presence and absence of ovaries in AKI female rats. METHODS The female rats were divided into two groups, ovariectomized (OVX) and sham, and were placed on CR and TR diets for eight weeks; afterward, AKI was induced by injecting glycerol, and kidney injury indicators and biochemical parameters were measured before and after AKI. RESULTS After AKI, the levels of urine albumin excretion rate, urea, and creatinine in serum, and TGF-β1 increased, while creatinine clearance and SIRT1 decreased in kidney tissue. CR improved kidney indicators and caused a reduction in TGF-β1 and an increase in SIRT1 in ovary-intact rats. Moreover, CR prevented total antioxidant capacity (TAC) decrease and malondialdehyde (MDA) increase resulting from AKI. Before AKI, an increase in body weight, fasting blood sugar (FBS), low-density lipoprotein (LDL), triglyceride (TG), and total cholesterol (TC), and a decrease in high-density lipoprotein (HDL) were observed in OVX rats compared to sham rats, but CR prevented these changes. The effects of TR were similar to those of CR in all indicators except for TGF-β1, SIRT1, urea, creatinine, and albumin. CONCLUSION The present study indicated that CR is more effective than TR in preventing AKI, probably by increasing SIRT1 and decreasing TGF-β1 in ovary-intact animals.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Department of Physiology and Pharmacology, 22 Bahman Blvd, Kerman, Iran.
| | - Maryam Sadat Mousavi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Esmaeilpour K, Jafari E, Rostamabadi F, Khaleghi M, Akhgarandouz F, Hosseini M, Najafipour H, Khodadoust M, Sheibani V, Rajizadeh MA. Myrtenol Inhalation Mitigates Asthma-Induced Cognitive Impairments: an Electrophysiological, Behavioral, Histological, and Molecular Study. Mol Neurobiol 2024; 61:4891-4907. [PMID: 38148370 DOI: 10.1007/s12035-023-03863-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Asthma is an inflammatory disorder with significant health problems. It generally affects the lungs but can also impact brain performance via several mechanisms. Some investigations have proposed that asthma impairs cognition. This study assessed the impacts of myrtenol as a monoterpene on cognitive disorders following asthma at behavioral, molecular, and synaptic levels. Asthma was induced by injection and inhalation of ovalbumin (OVA). Male Wistar rats were allocated to five groups: control, asthma, asthma/vehicle, asthma/myrtenol, and asthma/budesonide. Myrtenol (8 mg/kg) or budesonide (160 μg/kg) was administered through inhalation once a day for 1 week, and at the end of the inhalation period, behavioral tests (MWM and Open Field), field potential recording, hippocampal brain-derived neurotrophic factor (BDNF), IL1β (ELISA), and NFκB measurement (Western blot) were performed to evaluate cognitive performance. Moreover, H&E (hematoxylin and eosin) staining was used for hippocampus histological evaluation. Myrtenol improved spatial learning, memory, LTP (long-term potentiation) impairments, and anxiety-like behaviors following asthma. Myrtenol inhalation increased the BDNF level and decreased the IL1β level and NFκB expression in the hippocampus of the asthmatic rats. The neuronal damage in the hippocampus following allergic asthma was alleviated via myrtenol administration. Myrtenol, as an herbal extract, protects the hippocampus from asthma consequences. Our observations revealed that myrtenol can improve spatial learning, memory, synaptic plasticity impairments, and anxiety-like behaviors following asthma. We believe that these ameliorating effects of myrtenol can be attributed to inflammation suppression and increased BDNF in the hippocampus.
Collapse
Affiliation(s)
- Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, ON, Canada
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mina Khaleghi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Akhgarandouz
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Khodadoust
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
6
|
Rani A, Bean L, Budamagunta V, Kumar A, Foster TC. Failure of senolytic treatment to prevent cognitive decline in a female rodent model of aging. Front Aging Neurosci 2024; 16:1384554. [PMID: 38813533 PMCID: PMC11133672 DOI: 10.3389/fnagi.2024.1384554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
There are sex differences in vulnerability and resilience to the stressors of aging and subsequent age-related cognitive decline. Cellular senescence occurs as a response to damaging or stress-inducing stimuli. The response includes a state of irreversible growth arrest, the development of a senescence-associated secretory phenotype, and the release of pro-inflammatory cytokines associated with aging and age-related diseases. Senolytics are compounds designed to eliminate senescent cells. Our recent work indicates that senolytic treatment preserves cognitive function in aging male F344 rats. The current study examined the effect of senolytic treatment on cognitive function in aging female rats. Female F344 rats (12 months) were treated with dasatinib (1.2 mg/kg) + quercetin (12 mg/kg) or ABT-263 (12 mg/kg) or vehicle for 7 months. Examination of the estrus cycle indicated that females had undergone estropause during treatment. Senolytic treatment may have increased sex differences in behavioral stress responsivity, particularly for the initial training on the cued version of the watermaze. However, pre-training on the cue task reduced stress responsivity for subsequent spatial training and all groups learned the spatial discrimination. In contrast to preserved memory observed in senolytic-treated males, all older females exhibited impaired episodic memory relative to young (6-month) females. We suggest that the senolytic treatment may not have been able to compensate for the loss of estradiol, which can act on aging mechanisms for anxiety and memory independent of cellular senescence.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Linda Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Brimienė I, Šiaudinytė M, Burokas A, Grikšienė R. Exploration of the association between menopausal symptoms, gastrointestinal symptoms, and perceived stress: survey-based analysis. Menopause 2023; 30:1124-1131. [PMID: 37788428 DOI: 10.1097/gme.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE The study aimed to evaluate the relationship between menopausal symptoms, gastrointestinal symptoms, and experienced stress in women from premenopause to postmenopause. METHODS We conducted a cross-sectional study using an anonymous survey that included questions on demographics, health (gynecological, gastrointestinal), and lifestyle (physical activity, sleep, etc) factors, the Perceived Stress Scale (PSS), and the Menopause-Specific Quality of Life Questionnaire (MENQOL). RESULTS Data of 693 participants aged 50.1 ± 3.2 years were analyzed. We found that the MENQOL total score increased depending on the stages of reproductive aging ( P < 0.001) and positively correlated with PSS scores ( r = 0.47, P < 0.001). Age, reproductive stage, body mass index (BMI), PSS score, diagnosis of depression or anxiety disorder, physical activity, and frequency of defecation appeared to have significant association with the total MENQOL score ( P < 0.05). The analysis within separate MENQOL domains revealed that PSS score and diagnosis of depression or anxiety disorder were associated with higher scores in all MENQOL domains ( P < 0.05) except sexual. Physical activity and the values of the Bristol stool form scale were related to the vasomotor items ( P < 0.05). The frequency of defecation was an independent contributor to the psychosocial and sexual domains ( P < 0.05). BMI, physical activity, and frequency of defecation were associated with physical symptoms ( P < 0.05). CONCLUSIONS Perceived stress and some gastrointestinal symptoms in women were associated with menopausal symptoms. Reproductive stages, physical activity, BMI, and previously diagnosed depression or anxiety disorder were related to the intensity of menopausal symptoms. However, further research is needed to confirm the relationship between stress, gastrointestinal, and menopausal symptoms.
Collapse
Affiliation(s)
| | | | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ramunė Grikšienė
- From the Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Lodra EH, Effendi MC, Pematasari N, Dradjat RS. Fenugreek Seed Ethanolic Extract Improves Alveolar Bone Parameters by Attenuating Inflammation in Ovariectomized Rats. J Inflamm Res 2023; 16:4933-4940. [PMID: 37927959 PMCID: PMC10624190 DOI: 10.2147/jir.s428791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Alveolar bone residual ridge resorption remains a major challenge for dental implant placement in patients with edentulism. Fenugreek seed extracts have been reported to have potential roles in bone metabolism. Purpose This study aimed to evaluate the effects of fenugreek seed ethanolic extract (FSEE) on bone cells, inflammation, hormones, and angiogenesis parameters of alveolar bone tissue following teeth extraction in an ovariectomized (OVX) model. Methods A total of 30 adults female Wistar rats were assigned into two major groups. Each group consisted of control, OVX, OVX+FSEE 100 mg/kg BW, OVX+FSEE 200 mg/kg BW, and OVX+FSEE 400 mg/kg BW. The FSEE treatment was applied through the intragastric route for 7 days in the first group and for 30 days in the second group of animals. The first molar tooth of the right maxilla was extracted before the FSEE treatment. The level of 17β-estradiol was measured by the ELISA method. The dissected maxilla alveolar bone processus was sectioned for histological evaluation by hematoxylin-eosin staining and an immunohistochemistry assay. Results This study found that FSEE reduced the blood estrogen level and increased estrogen receptor-α (ER-α) expression. FSEE administration modified the number of bone cells, angiogenesis, vascular endothelial growth factor (VEGF), sclerostin, and the osteoprotegerin/receptor activator of nuclear factor kappa-β ligand (OPG/RANKL) ratio. Alterations were seen in the inflammatory markers interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and the macrophage-1/macrophage-2 (M1/M2) ratio. Conclusion In this study, inflammation was found to be attenuated by reductions in IL-6 and sclerostin, and an increase in TGF-β1. The maturation of bone osteocytes increased along with the increase in ER-α expression and ratio of OPG/RANKL.
Collapse
Affiliation(s)
- Ester Handayani Lodra
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Muhammad Chair Effendi
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Nur Pematasari
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Respati Suryanto Dradjat
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Brawijaya and Dr. Saiful Anwar Hospital, Malang, East Java, Indonesia
| |
Collapse
|
10
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Rafie F, Rajizadeh MA, Shahbazi M, Pourranjbar M, Nekouei AH, Sheibani V, Peterson D. Effects of voluntary, and forced exercises on neurotrophic factors and cognitive function in animal models of Parkinson's disease. Neuropeptides 2023; 101:102357. [PMID: 37393777 DOI: 10.1016/j.npep.2023.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly. Cognitive dysfunction represents a common and challenging non-motor symptom for people with Parkinson's disease. The number of neurotrophic proteins in the brain is critical in neurodegenerative diseases such as Parkinson's. This research aims to compare the effects of two types of exercise, forced and voluntary, on spatial memory and learning and neurochemical factors (CDNF and BDNF). METHODS In this research, 60 male rats were randomly divided into six groups (n = 10): the control (CTL) group without exercise, the Parkinson's groups without and with forced (FE) and voluntary (VE) exercises, and the sham groups (with voluntary and forced exercise). The animals in the forced exercise group were placed on the treadmill for four weeks (five days a week). At the same time, voluntary exercise training groups were placed in a special cage equipped with a rotating wheel. At the end of 4 weeks, learning and spatial memory were evaluated with the Morris water maze test. BDNF and CDNF protein levels in the hippocampus were measured by the ELISA method. RESULTS The results showed that although the PD group without exercise was at a significantly lower level than other groups in terms of cognitive function and neurochemical factors, both types of exercise, could improve these problems. CONCLUSION According to our results, 4 weeks of voluntary and forced exercises were all found to reverse the cognitive impairments of PD rats.
Collapse
Affiliation(s)
- Forouzan Rafie
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Shahbazi
- Department of Physical Education & Exercise Science, Tehran University, Tehran, Iran
| | - Mohammad Pourranjbar
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir H Nekouei
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Daniel Peterson
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Pheonix VA Medical Center. Phoenix, AZ, USA
| |
Collapse
|
12
|
Mousavi MS, Meknatkhah S, Imani A, Geramifar P, Riazi G. Comparable assessment of adolescent repeated physical or psychological stress effects on adult cardiac performance in female rats. Sci Rep 2023; 13:16401. [PMID: 37775558 PMCID: PMC10541905 DOI: 10.1038/s41598-023-43721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Extensive evidence highlights a robust connection between various forms of chronic stress and cardiovascular disease (CVD). In today's fast-paced world, with chronic stressors abound, CVD has emerged as a leading global cause of mortality. The intricate interplay of physical and psychological stressors triggers distinct neural networks within the brain, culminating in diverse health challenges. This study aims to discern the unique impacts of chronic physical and psychological stress on the cardiovascular system, unveiling their varying potencies in precipitating CVD. Twenty-one adolescent female rats were methodically assigned to three groups: (1) control (n = 7), (2) physical stress (n = 7), and (3) psychological stress (n = 7). Employing a two-compartment enclosure, stressors were administered to the experimental rats over five consecutive days, each session lasting 10 min. After a 1.5-month recovery period post-stress exposure, a trio of complementary techniques characterized by high specificity or high sensitivity were employed to meticulously evaluate CVD. Echocardiography and single-photon emission computed tomography (SPECT) were harnessed to scrutinize left ventricular architecture and myocardial viability, respectively. Subsequently, the rats were ethically sacrificed to facilitate heart removal, followed by immunohistochemistry staining targeting glial fibrillary acidic protein (GFAP). Rats subjected to psychological stress showed a wider range of significant cardiac issues compared to control rats. This included left ventricular hypertrophy [IVSd: 0.1968 ± 0.0163 vs. 0.1520 ± 0.0076, P < 0.05; LVPWd: 0.2877 ± 0.0333 vs. 0.1689 ± 0.0057, P < 0.01; LVPWs: 0.3180 ± 0.0382 vs. 0.2226 ± 0.0121, P < 0.05; LV-mass: 1.283 ± 0.0836 vs. 1.000 ± 0.0241, P < 0.01], myocardial ischemia [21.30% vs. 32.97%, P < 0.001], and neuroinflammation. This outcome underscores the imperative of prioritizing psychological well-being during adolescence, presenting a compelling avenue to curtail the prevalence of CVD in adulthood. Furthermore, extending such considerations to individuals grappling with CVD might prospectively enhance their overall quality of life.
Collapse
Affiliation(s)
- Monireh-Sadat Mousavi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Abolhasani F, Pourshojaei Y, Mohammadi F, Esmaeilpour K, Asadipour A, Ilaghi M, Shabani M. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia. Neurosci Lett 2023; 810:137332. [PMID: 37302565 DOI: 10.1016/j.neulet.2023.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, often characterized by progressive deficits in memory and cognitive functions. Cholinesterase inhibitors have been introduced as promising agents to enhance cognition and memory in both human patients and animal models of AD. In the current study, we assessed the effects of a synthetic phenoxyethyl piperidine derivative, compound 7c, as a novel dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), on learning and memory, as well as serum and hippocampal AChE levels in an animal model of AD. The model of dementia was induced by intracerebroventricular injection of streptozotocin (STZ, 2 mg/kg) to male Wistar rats. STZ-treated rats received compound 7c (3, 30, and 300 µg/kg) for five consecutive days. Passive avoidance (PA) learning and memory, as well as spatial learning and memory using Morris water maze, were evaluated. The level of AChE was measured in the serum and the left and right hippocampus. Findings demonstrated that compound 7c (300 µg/kg) was able to reverse STZ-induced impairments in PA memory, while also reduced the increased AChE level in the left hippocampus. Taken together, compound 7c appeared to act as a central AChE inhibitor, and its role in alleviating cognitive deficits in the AD animal model suggests that it may have therapeutic potential in AD dementia. Further research is required to assess the effectiveness of compound 7c in more reliable models of AD in light of these preliminary findings.
Collapse
Affiliation(s)
- Fatemeh Abolhasani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Khadijeh Esmaeilpour
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Shahrbabaki SSV, Moslemizadeh A, Amiresmaili S, Tezerji SS, Juybari KB, Sepehri G, Meymandi MS, Bashiri H. Ameliorating age-dependent effects of resveratrol on VPA-induced social impairments and anxiety-like behaviors in a rat model of Neurodevelopmental Disorder. Neurotoxicology 2023; 96:154-165. [PMID: 36933665 DOI: 10.1016/j.neuro.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Although anxiety disorders, as well as difficulties in social interaction, are documented in children with autism spectrum disorder (ASD) as a neurodevelopmental disorder, the effectiveness of potential therapeutic procedures considering age and sex differences is under serious discussion. The present study aimed to investigate the effect of resveratrol (RSV) on anxiety-like behaviors and social interaction in juvenile and adult rats of both sex in a valproic acid (VPA)-induced autistic-like model. Prenatal exposure to VPA was associated with increased anxiety, also causing a significant reduction in social interaction in juvenile male subjects. Further administration of RSV attenuated VPA-induced anxiety symptoms in both sexes of adult animals and significantly increased the sociability index in male and female juvenile rats. Taken together, it can be concluded that treatment with RSV can attenuate some of the harsh effects of VPA. This treatment was especially effective on anxiety-like traits in adult subjects of both sexes regarding their performance in open field and EPM. We encourage future research to consider the sex and age-specific mechanisms behind the RSV treatment in the prenatal VPA model of autism.
Collapse
Affiliation(s)
| | | | | | | | - Kobra Bahrampour Juybari
- Department of Pharmacology, Shcool of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamreza Sepehri
- neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manzume Shamsi Meymandi
- neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Khoramipour K, Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P, Farahmand F. High-Intensity Interval Training Ameliorates Molecular Changes in the Hippocampus of Male Rats with the Diabetic Brain: the Role of Adiponectin. Mol Neurobiol 2023; 60:3486-3495. [PMID: 36877358 DOI: 10.1007/s12035-023-03285-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is closely related to type 2 diabetes (T2D). This study investigated the impact of high-intensity interval training (HIIT) on diabetes-induced disturbances in AD-related factors (including AMP-activated protein kinase (AMPK), glycogen synthase kinase-3β (GSK3β), and tau protein) in the hippocampus, with the main focus on adiponectin signaling.In total, 28 male Wistar rats at the age of 8 weeks were randomly assigned to four groups (n = 7 in each group): control (Con), type 2 diabetes (T2D), HIIT (Ex), and type 2 diabetes + HIIT (T2D + Ex). T2D was induced by a high-fat diet plus a single dose of streptozotocin (STZ). Rats in Ex and T2D + Ex groups performed 8 weeks of HIIT (running at 8-95% of Vmax, 4-10 intervals). Insulin and adiponectin levels in serum and hippocampus were measured along with hippocampal expression of insulin and adiponectin receptors, phosphorylated AMPK, dephosphorylated GSK3β, and phosphorylated tau. Homeostasis model assessment for insulin resistance (HOMA-IR), homeostasis model assessment for insulin resistance beta (HOMA-β), and quantitative insulin sensitivity check index (QUICKI) were calculated to assess insulin resistance and sensitivity. T2D decreased insulin and adiponectin levels in serum and hippocampus, as well as the hippocampal levels of insulin and adiponectin receptors and AMPK, but increased GSK3β and tau in the hippocampus. HIIT reversed diabetes-induced impairments and consequently decreased tau accumulation in the hippocampus of diabetic rats. HOMA-IR, HOMA-β, and QUICKI were improved in Ex and T2D + Ex groups. Overall, our results confirmed that T2D has undesirable effects on the levels of some Alzheimer's-related factors in the hippocampus, and HIIT could ameliorate these impairments in the hippocampus.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Padideh Dehghan
- Department of Alternative Medicine, Resalat Hospital, Tehran, Iran
| | - Fattaneh Farahmand
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
16
|
Bejeshk MA, Beik A, Aminizadeh AH, Salimi F, Bagheri F, Sahebazzamani M, Najafipour H, Rajizadeh MA. Perillyl alcohol (PA) mitigates inflammatory, oxidative, and histopathological consequences of allergic asthma in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1235-1245. [PMID: 36707429 DOI: 10.1007/s00210-023-02398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Allergic asthma is an inflammatory and chronic condition, which is the most common asthma phenotype. It is usually defined by sensitivity to environmental allergens and leads to the narrowing of the airways. Around 300 million individuals are suffering from asthma worldwide. The purpose of the current research was to evaluate the effect of perillyl alcohol (PA) on oxidative stress and inflammation parameters in rats with allergic asthma. Experimental asthma was induced by ovalbumin (OVA) sensitization and inhalation in five groups of rats including control, asthma, asthma + vehicle, asthma + PA, and asthma + dexamethasone (Dexa). PA (50 mg/kg) or Dexa (2.5 mg/kg) were administered intraperitoneally for seven consecutive days following asthma induction. Histopathological evaluation was performed via hematoxylin and eosin (H&E) and Masson's trichrome staining. The enzyme-linked immunosorbent assay (ELISA) was used for the evaluation of the cytokine levels, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-17, and IL-10, as well as oxidative stress biomarkers including reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione peroxidase (GPx) in the lung tissue and bronchoalveolar lavage fluid (BALF). Real-time polymerase chain reaction (PCR) was utilized for assessing the mRNA expression of FOXP3 and GATA3 and western blot analysis was used for the measurement of nuclear factor kappa B (NF-κB) protein expression. PA and Dexa decreased the pathological alterations and the expression levels of inflammatory factors (cytokines, GATA3, and NF-κB) in the lung tissue and BALF of asthmatic rats. PA restored GPx, SOD, and TAC levels and reduced ROS, MDA, nitrite, and total protein in the lung and BALF. Overall, our findings demonstrated that PA can be used as a therapeutic agent in asthma patients, but it is essential to monitor its effects in future clinical studies.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Beik
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hashem Aminizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran.,Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Maryam Sahebazzamani
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.,Department of Clinical Biochemistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Anxiety-like behavior and GABAergic system in ovariectomized rats exposed to chronic mild stress. Physiol Behav 2023; 258:114014. [PMID: 36328075 DOI: 10.1016/j.physbeh.2022.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Stress or low level of estrogen could promote anxiety and depression; thus, it is of interest to investigate the combined effect of mild stress and the lack of estrogen on mental disorders by utilizing an animal model. This study was conducted to assess anxiety- and depressive- like behaviors in ovariectomized (Ovx) rats exposed to chronic mild stress (CMS) and determine the alteration in gamma-aminobutyric acid (GABA)-related transmission. Ovx rats were randomly assigned into four groups: (1) estrogen replacement (E2-NoCMS), (2) estrogen replacement and exposure to CMS (E2-CMS), (3) vehicle (VEH-NoCMS), and (4) vehicle and exposure to CMS (VEH-CMS). Following 4-week CMS, VEH groups (VEH-NoCMS and VEH-CMS) showed a similar level of anxiety-like behavior in elevated T-maze, whereas E2-CMS, VEH-NoCMS and VEH-CMS showed anxiety-like behavior in open field. The depressive-like behavior in the force swimming test tended to be affected by estrogen deprivation than CMS. The alteration of the GABAergic system as determined from the GABA level and mRNA expression of GABA-related transmission (i.e., glutamic acid decarboxylase, GABA transporter and GABAA subunits) showed that the GABA level in the amygdala and frontal cortex was affected by CMS. For mRNA expression, the mRNA profile in the amygdala and hippocampus of VEH-NoCMS and E2-CMS was the same but different from those of VEH-NoCMS and E2-CMS. In addition, compared with E2-NoCMS, the mRNA profile in the frontal cortex was similar in VEH-NoCMS, E2-CMS, and VEH-CMS. These findings indicated that the underlying mechanism of the GABAergic system was differently modified, although VEH-NoCMS and VEH-CMS showed anxiety-like behavior. The findings of this study may provide a comprehensive understanding of the modulation of the GABAergic system during estrogen deprivation under CMS, as observed in menopausal women who were daily exposed to stress.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | |
Collapse
|
18
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
19
|
Bhandari A, Sunkaria A, Kaur G. Dietary Supplementation With Tinospora cordifolia Improves Anxiety-Type Behavior and Cognitive Impairments in Middle-Aged Acyclic Female Rats. Front Aging Neurosci 2022; 14:944144. [PMID: 35966795 PMCID: PMC9366175 DOI: 10.3389/fnagi.2022.944144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
The midlife transition period in women marks the progressive flattening of neurological health along with increased adiposity, dyslipidemia, frailty, and inflammatory responses mainly attributed to the gradual decline in estrogen levels. Conflicting reports of hormone replacement therapy (HRT) necessitate the exploration of novel therapeutic interventions using bioactive natural products having the least toxicity and a holistic mode of action for the preservation of metabolic homeodynamics with aging in women. The present study was planned to investigate the effects of aging and/or a high-fat diet (HFD) on cognitive impairments and anxiety and further their management by dietary supplement with the Tinospora cordifolia stem powder (TCP). Acyclic female rats were included in this study as the model system of the perimenopause phase of women along with young 3-4 months old rats as controls. Rats were fed on with and without TCP supplemented normal chow or HFD for 12 weeks. Animals fed on a TCP supplemented normal chow showed consistent management of body weight over a 12-week regimen although their calorie intake was much higher in comparison to their age-matched controls. Post-regimen, neurobehavioral tests, such as novel object recognition and elevated plus maze, performed on these animals showed improvement in their learning and memory abilities as well as the anxiety-like behavior. Furthermore, due to the presence of multiple components, TCP was observed to modulate the expression of key marker proteins to ameliorate neuroinflammation and apoptosis and promote cell survival and synaptic plasticity in the hippocampus and the prefrontal cortex (PFC) regions of the brain. These findings suggest that TCP supplementation in diet during the midlife transition period in women may be a potential interventional strategy for the management of menopause-associated anxiety and cognitive impairments and healthy aging.
Collapse
Affiliation(s)
| | | | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
20
|
Marchant IC, Chabert S, Martínez-Pinto J, Sotomayor-Zárate R, Ramírez-Barrantes R, Acevedo L, Córdova C, Olivero P. Estrogen, Cognitive Performance, and Functional Imaging Studies: What Are We Missing About Neuroprotection? Front Cell Neurosci 2022; 16:866122. [PMID: 35634466 PMCID: PMC9133497 DOI: 10.3389/fncel.2022.866122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023] Open
Abstract
Menopause transition can be interpreted as a vulnerable state characterized by estrogen deficiency with detrimental systemic effects as the low-grade chronic inflammation that appears with aging and partly explains age-related disorders as cancer, diabetes mellitus and increased risk of cognitive impairment. Over the course of a lifetime, estrogen produces several beneficial effects in healthy neurological tissues as well as cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the efficacy of hormone treatment in menopausal women has failed to confirm the benefit reported in observational studies. Unambiguously, enhanced verbal memory is the most robust finding from longitudinal and cross-sectional studies, what merits consideration for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related brain activity and functional connectivity remain, however, unexplored. In this context, the resting state paradigm may provide valuable information about reproductive aging and hormonal treatment effects, and their relationship with brain imaging of functional connectivity may be key to understand and anticipate estrogen cognitive protective effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-to-long lasting protective effects of estrogen, we will provide a comprehensive review of cognitive tasks used in animal studies to evaluate the effect of hormone treatment on cognitive performance and discuss about the tasks best suited to the demonstration of clinically significant differences in cognitive performance to be applied in human studies. Eventually, we will focus on studies evaluating the DMN activity and responsiveness to pharmacological stimulation in humans.
Collapse
Affiliation(s)
- Ivanny Carolina Marchant
- Laboratorio de Modelamiento en Medicina, Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ivanny Carolina Marchant
| | - Stéren Chabert
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
- Escuela de Ingeniería Biomédica, Universidad de Valparaiso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Lilian Acevedo
- Servicio de Neurología Hospital Carlos van Buren, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Olivero
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Pablo Olivero
| |
Collapse
|
21
|
Pyo S, Kim J, Hwang J, Heo JH, Kim K, Cho SR. Environmental Enrichment and Estrogen Upregulate Beta-Hydroxybutyrate Underlying Functional Improvement. Front Mol Neurosci 2022; 15:869799. [PMID: 35592114 PMCID: PMC9113201 DOI: 10.3389/fnmol.2022.869799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Environmental enrichment (EE) is a promising therapeutic strategy in improving metabolic and neuronal responses, especially due to its non-invasive nature. However, the exact mechanism underlying the sex-differential effects remains unclear. The aim of the current study was to investigate the effects of EE on metabolism, body composition, and behavioral phenotype based on sex. Long-term exposure to EE for 8 weeks induced metabolic changes and fat reduction. In response to the change in metabolism, the level of βHB were influenced by sex and EE possibly in accordance to the phases of estrogen cycle. The expression of β-hydroxybutyrate (βHB)-related genes and proteins such as monocarboxylate transporters, histone deacetylases (HDAC), and brain-derived neurotrophic factor (BDNF) were significantly regulated. In cerebral cortex and hippocampus, EE resulted in a significant increase in the level of βHB and a significant reduction in HDAC, consequently enhancing BDNF expression. Moreover, EE exerted significant effects on motor and cognitive behaviors, indicating a significant functional improvement in female mice under the condition that asserts the influence of estrogen cycle. Using an ovariectomized mice model, the effects of EE and estrogen treatment proved the hypothesis that EE upregulates β-hydroxybutyrate and BDNF underlying functional improvement in female mice. The above findings demonstrate that long-term exposure to EE can possibly alter metabolism by increasing the level of βHB, regulate the expression of βHB-related proteins, and improve behavioral function as reflected by motor and cognitive presentation following the changes in estrogen level. This finding may lead to a marked improvement in metabolism and neuroplasticity by EE and estrogen level.
Collapse
Affiliation(s)
- Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Joohee Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Hwang
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Hyun Heo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungri Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Buján GE, D'Alessio L, Serra HA, Molina SJ, Guelman LR. Behavioral alterations induced by intermittent ethanol intake and noise exposure in adolescent rats. Eur J Neurosci 2022; 55:1756-1773. [PMID: 35342999 DOI: 10.1111/ejn.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Alcohol intake and exposure to noise are common activities of human adolescents performed in entertainment contexts worldwide that can induce behavioral disturbances. Therefore, the aim of the present work was to investigate in an experimental model of adolescent animals whether noise exposure and intermittent ethanol intake, when present individually or sequentially, might be able to modify different behaviors. Adolescent Wistar rats of both sexes were subjected to voluntary intermittent ethanol intake for 1 week followed by exposure to noise for 2 h and tested in a battery of behavioral tasks. Data show that males exposed to noise experienced a deficit in associative memory (AM), increase in anxiety-like behaviors (ALB) and altered reaction to novelty (RN) when compared with sham animals, whereas females also showed an increase in risk assessment behaviors (RAB) and a decrease in exploratory activity (EA). In contrast, ethanol intake induced an increase in RAB and RN in males and females, whereas females also showed a deficit in AM and EA as well as an increase in ALB. When ethanol was ingested before noise exposure, most parameters were counteracted both in male and females, but differed among sexes. In consequence, it could be hypothesized that an environmental acute stressor like noise might trigger a behavioral counteracting induced by a previous repeated exposure to a chemical agent such as ethanol, leading to a compensation of a non-adaptive behavior and reaching a better adjustment to the environment.
Collapse
Affiliation(s)
- Gustavo Ezequiel Buján
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Luciana D'Alessio
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología Celular y Neurociencias (IBCN, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Héctor Alejandro Serra
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia Jazmín Molina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
23
|
Kohne S, Diekhof EK. Testosterone and estradiol affect adolescent reinforcement learning. PeerJ 2022; 10:e12653. [PMID: 35186450 PMCID: PMC8818269 DOI: 10.7717/peerj.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
During adolescence, gonadal hormones influence brain maturation and behavior. The impact of 17β-estradiol and testosterone on reinforcement learning was previously investigated in adults, but studies with adolescents are rare. We tested 89 German male and female adolescents (mean age ± sd = 14.7 ± 1.9 years) to determine the extent 17β-estradiol and testosterone influenced reinforcement learning capacity in a response time adjustment task. Our data showed, that 17β-estradiol correlated with an enhanced ability to speed up responses for reward in both sexes, while the ability to wait for higher reward correlated with testosterone primary in males. This suggests that individual differences in reinforcement learning may be associated with variations in these hormones during adolescence, which may shift the balance between a more reward- and an avoidance-oriented learning style.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K. Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Phytoestrogen genistein modulates neuron-microglia signaling in a mouse model of chronic social defeat stress. Neuropharmacology 2022; 206:108941. [PMID: 34990615 DOI: 10.1016/j.neuropharm.2021.108941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/20/2023]
Abstract
Microglia, resident immune cells in the brain, are shown to mediate the crosstalk between psychological stress and depression. Interestingly, increasing evidence indicates that sex hormones, particularly estrogen, are involved in the regulation of immune system. In this study, we aimed to understand the potential effects of chronic social defeat stress (CSDS) and genistein (GEN), an estrogenic compound of the plant origin, on neuron-microglia interactions in the mouse hippocampus. The time spent in the avoidance zone in the social interaction test was increased by CSDS 1 day after the exposure, while the avoidance behavior returned to control levels 14 days after the CSDS exposure. Similar results were obtained from the elevated plus-maze test. However, the immobility time in the forced swim test was increased by CSDS 14 days after the exposure, and the depression-related behavior was in part alleviated by GEN. The numerical densities of microglia in the hippocampus were increased by CSDS, and they were decreased by GEN. The voxel densities of synaptic structures and synaptic puncta colocalized with microglia were decreased by CSDS, and they were increased by GEN. Neither CSDS nor GEN affected the gene expressions of major pro-inflammatory cytokines. Conversely, the expression levels of genes related to neurotrophic factors were decreased by CSDS, and they were partially reversed by GEN. These findings show that GEN may in part alleviate stress-related symptoms, and the effects of GEN may be associated with the modulation of neuron-microglia signaling via chemokines and neurotrophic factors in the hippocampus.
Collapse
|
25
|
Khaleghi M, Rajizadeh MA, Bashiri H, Kohlmeier KA, Mohammadi F, Khaksari M, Shabani M. Estrogen attenuates physical and psychological stress-induced cognitive impairments in ovariectomized rats. Brain Behav 2021; 11:e02139. [PMID: 33811472 PMCID: PMC8119870 DOI: 10.1002/brb3.2139] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/14/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Women are more vulnerable to stress-related disorders than men, which is counterintuitive as female sex hormones, especially estrogen, have been shown to be protective against stress disorders. METHODS In this study, we investigated whether two different models of stress act differently on ovariectomized (OVX) rats and the impact of estrogen on physical or psychological stress-induced impairments in cognitive-behaviors. Adult female Wistar rats at 21-22 weeks of age were utilized for this investigation. Sham and OVX rats were subjected to physical and psychological stress for 1 hr/day for 7 days, and cognitive performance was assessed using morris water maze (MWM) and passive avoidance (PA) tests. The open field and elevated plus maze tests (EPM) evaluated exploratory and anxiety-like behaviors. RESULTS In sham and OVX rats, both physical and psychological stressors were associated with an increase in EPM-determined anxiety-like behavior. OVX rats exhibited decreased explorative behavior in comparison with nonstressed sham rats (p < .05). Both physical stress and psychological stress resulted in disrupted spatial cognition as assayed in the MWM (p < .05) and impaired learning and memory as determined by the PA test when the OVX and sham groups were compared with the nonstressed sham group. Estrogen increased explorative behavior, learning and memory (p < .05), and decreased anxiety-like behavior compared with vehicle in OVX rats exposed to either type of stressor. CONCLUSIONS When taken together, estrogen and both stressors had opposite effects on memory, anxiety, and PA performance in a rat model of menopause, which has important implications for potential protective effects of estrogen in postmenopausal women exposed to chronic stress.
Collapse
Affiliation(s)
- Mina Khaleghi
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Kerman University of Medical Science, Kerman Iran and Sirjan School of Medical Sciences, Sirjan, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fatemeh Mohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|