1
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2024:10.1007/s12035-024-04655-x. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Sadr Z, Rohani M, Jamali P, Alavi A. A case report of concurrent occurrence of two inherited axonopathies within a family: the benefit of whole-exome sequencing. Int J Neurosci 2024; 134:1282-1287. [PMID: 37712628 DOI: 10.1080/00207454.2023.2260091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Mutations in ERLIN2 and MFN2 lead to the development of spastic paraplegia-18 (SPG18) and Charcot-Marie-Tooth type-2A (CMT2A), respectively. These disorders are unified by the fact that both can be termed inherited axonopathies. With whole-exome sequencing (WES), more patients of neurological disorders with clinical overlaps receive a genetic result than ever before. This study describes an Iranian family who harbor mutations in ERLIN2 and MFN2, simultaneously. The proband was a 73-year old man who has experienced weakness and spasticity of lower limbs since late childhood. He was diagnosed with hereditary spastic paraplegia (HSP). His WES identified a novel homozygous variant in ERLIN2 as well as a known heterozygous variant in MFN2. These variants were cosegregated with the phenotypes among the family members. His sister with a similar phenotype just carried the homozygous ERLIN2 variant, whereas, his asymptomatic brother and daughter carried the heterozygous variant of MFN2. Re-evaluation of the MFN2 variant carriers by nerve conduction study revealed that only the proband's daughter has peripheral neuropathy. Herein, using WES two distinct disease-causing variants with different modes of inheritance in ERLIN2 and MFN2 were detected in the proband. As expected, individuals with a defined MFN2 variant, p.Arg468His, were asymptomatic or had a mild phenotype. The co-occurrence of such diseases, SPG18 and CMT2A, may result in the milder phenotype to be overlooked or its features considered as a part of the symptoms of other disease. Certainly, providing genetic counseling in such cases can be challenging. These cases reveal the importance of WES.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, School of Medicines, Iran University of Medical Sciences, Tehran, Iran
| | | | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Trinchillo A, Valente V, Esposito M, Migliaccio M, Iovino A, Picciocchi M, Cuomo N, Caccavale C, Nocerino C, De Rosa L, Salvatore E, Pierantoni GM, Menchise V, Paladino S, Criscuolo C. Expanding SPG18 clinical spectrum: autosomal dominant mutation causes complicated hereditary spastic paraplegia in a large family. Neurol Sci 2024; 45:4373-4381. [PMID: 38607533 PMCID: PMC11306645 DOI: 10.1007/s10072-024-07500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND SPG18 is caused by mutations in the endoplasmic reticulum lipid raft associated 2 (ERLIN2) gene. Autosomal recessive (AR) mutations are usually associated with complicated hereditary spastic paraplegia (HSP), while autosomal dominant (AD) mutations use to cause pure SPG18. AIM To define the variegate clinical spectrum of the SPG18 and to evaluate a dominant negative effect of erlin2 (encoded by ERLIN2) on oligomerization as causing differences between AR and AD phenotypes. METHODS In a four-generation pedigree with an AD pattern, a spastic paraplegia multigene panel test was performed. Oligomerization of erlin2 was analyzed with velocity gradient assay in fibroblasts of the proband and healthy subjects. RESULTS Despite the common p.V168M mutation identified in ERLIN2, a phenoconversion to amyotrophic lateral sclerosis (ALS) was observed in the second generation, pure HSP in the third generation, and a complicated form with psychomotor delay and epilepsy in the fourth generation. Erlin2 oligomerization was found to be normal. DISCUSSION We report the first AD SPG18 family with a complicated phenotype, and we ruled out a dominant negative effect of V168M on erlin2 oligomerization. Therefore, our data do not support the hypothesis of a relationship between the mode of inheritance and the phenotype, but confirm the multifaceted nature of SPG18 on both genetic and clinical point of view. Clinicians should be aware of the importance of conducting an in-depth clinical evaluation to unmask all the possible manifestations associated to an only apparently pure SPG18 phenotype. We confirm the genotype-phenotype correlation between V168M and ALS emphasizing the value of close follow-up.
Collapse
Affiliation(s)
- Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Aniello Iovino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Michele Picciocchi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Cuomo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Carmela Caccavale
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Cristofaro Nocerino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Salvatore
- CDCD Neurology, "Federico II" University Hospital, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Menchise
- Institute of Biostructure and Bioimaging, National Research Council (CNR) and Molecular Biotechnology Center, Turin, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy.
- CDCD Neurology, "Federico II" University Hospital, Naples, Italy.
| |
Collapse
|
4
|
Cioffi E, Gioiosa V, Tessa A, Petrucci A, Trovato R, Santorelli FM, Casali C. Hereditary spastic paraparesis type 18 (SPG18): new ERLIN2 variants in a series of Italian patients, shedding light upon genetic and phenotypic variability. Neurol Sci 2024; 45:3845-3852. [PMID: 38427163 PMCID: PMC11255072 DOI: 10.1007/s10072-024-07423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Valeria Gioiosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Antonio Petrucci
- Department of Neurology and Neurophysiopathology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense, 87, 00152, Rome, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
5
|
de Souza GC, Malta MC, Santos MRS, Fontes MÍB, de Sousa Anjos JL, Ribeiro DP, Kok F, Figueiredo T. Novel ERLIN2 variant expands the phenotype of Spastic Paraplegia 18. Neurol Sci 2024; 45:2705-2710. [PMID: 38159148 DOI: 10.1007/s10072-023-07271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Brazilian Northeast region is notable for its high prevalence of consanguineous marriages and isolated populations, which has led to a significant prevalence of rare genetic disorders. This study describes the clinical presentation of four affected individuals from the same family, comprising two siblings and their cousins, with ages ranging from 11 to 20 years. METHODS In a small and isolated community in Northeastern Brazil, affected individuals initially underwent a clinical assessment. Subsequently, written consent was obtained from their legal guardians, and an extensive clinical evaluation was conducted at a medical genetics center. Family data provided the basis for constructing the pedigree, and biological samples (blood or oral swabs) were collected from both affected and unaffected family members. Following informed consent from one patient, Whole Exome Sequencing (WES) was carried out, encompassing exome sequencing, assembly, genotyping, and annotation. A potentially deleterious variant was then singled out for further segregation analysis through Sanger Sequencing, involving both the proband and select family members. RESULTS AND CONCLUSION These individuals exhibit severe neurodevelopmental delays, encompassing symptoms such as spastic paraplegia, neuropathy, intellectual impairments, and language challenges. Through next-generation sequencing (NGS) techniques, a previously unreported homozygous variant within the ERLIN2 gene linked to spastic paraplegia 18 (SPG18) was identified across all four patients. Also, all patients displayed childhood cataract, expanding the known clinical spectrum of SPG18.
Collapse
Affiliation(s)
| | - Maria Carolina Malta
- Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Marshall Ítalo Barros Fontes
- Clinical Genetics Service, Medical Genetics Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Center of Health Sciences, Alagoas State University of Health Sciences-UNCISAL, Maceió, Alagoas, Brazil
| | - Juliana Lopes de Sousa Anjos
- Ophthalmology Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Diego Patrício Ribeiro
- Ophthalmology Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Fernando Kok
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Mendelics Genomic Analysis, São Paulo, SP, Brazil
| | - Thalita Figueiredo
- Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
6
|
Wang J, Zhao R, Cao H, Yin Z, Ma J, Xing Y, Zhang W, Chang X, Guo J. A novel autosomal dominant ERLIN2 variant activates endoplasmic reticulum stress in a Chinese HSP family. Ann Clin Transl Neurol 2023; 10:2139-2148. [PMID: 37752894 PMCID: PMC10646992 DOI: 10.1002/acn3.51902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia (HSP) has been reported rarely because of a monoallelic variant in ERLIN2. The present study aimed at describing a novel autosomal dominant ERLIN2 pedigree in a Chinese family and exploring the possible mechanism of HSP caused by ERLIN2 variants. METHODS The proband and his family underwent a comprehensive medical history inquiry and neurological examinations. Whole-exome sequencing was performed on the proband, and Sanger sequencing was performed on some family members. HeLa cell lines and mouse primary cortical neurons were used for immunofluorescence (IF) and reverse transcription-PCR (RT-PCR). RESULTS Seven patients were clinically diagnosed with pure spastic paraplegia in four consecutive generations with the autosomal dominant inheritance model. All patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Whole-exome sequencing of the proband and Sanger sequencing of all available family members identified a novel heterozygous c.212 T>C (p.V71A) variant in exon 8 of the ERLIN2 gene. The c.212 T>C demonstrated a high pathogenic effect score through functional prediction. RT-PCR and IF analysis of overexpressed V71A revealed an altered ER morphology and increased XBP-1S mRNA levels, suggesting the activation of ER stress. Overexpression of V71A in primary cultured cortical neurons promoted axon growth. INTERPRETATION The novel c.212 T>C heterozygous variant in human ERLIN2 caused pure HSP. Moreover, c.212 T>C heterozygous variant in ERLIN2 increased ER stress and affected axonal development.
Collapse
Affiliation(s)
- Juan Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Rongjuan Zhao
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hanshuai Cao
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Zhaoxu Yin
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Jing Ma
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Yingming Xing
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Wei Zhang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xueli Chang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Junhong Guo
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
7
|
Chen S, Zou JL, He S, Li W, Zhang JW, Li SJ. More autosomal dominant SPG18 cases than recessive? The first AD-SPG18 pedigree in Chinese and literature review. Brain Behav 2021; 11:e32395. [PMID: 34734492 PMCID: PMC8671789 DOI: 10.1002/brb3.2395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia (HSP) due to ERLIN2 gene mutations was designated as spastic paraplegia 18 (SPG18). To date, SPG18 families/cases are still rarely reported. All early reported cases shared the autosomal recessive (AR) inheritance pattern. Over the past 3 years, autosomal dominant (AD) or sporadic SPG18 cases had been continuously reported. Here, we reported the clinical and genetic features of the first autosomal dominant SPG18 pedigree in Chinese. METHODS We conducted detailed medical history inquiry, neurological examinations of the proband and his family members, and charted the family tree. The proband underwent brain and cervical magnetic resonance imaging (MRI), electromyography (EMG), and whole exome sequencing. Sanger sequencing was performed to verify the genetic variation in the proband and some family members. A literature review of all reported SPG18 families/cases was carried out to summarize the clinical-genetic characteristics of SPG18 under different inheritance patterns. RESULTS Four patients were clinically diagnosed as chronic spastic paraplegia in three consecutive generations with the autosomal dominant inheritance model. All the patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Clinical phenotypes were consistent within the family. Whole exome sequencing in the proband identified a previously reported heterozygous c.502G > A (p.V168M) mutation in exon 8 of ERLIN2 gene. This mutation was cosegregated with the phenotype in the family and was classified as likely pathogenic according to American College of Medical Genetics and Genomics (ACMG) guidelines. To date, eight AR-SPG18 families, five AD-SPG18 families, and three sporadic cases had been reported. Clinical phenotype of AD-SPG18 was juvenile-adolescent onset pure HSP, while the phenotype of AR-SPG18 was mostly complicated HSP with earlier onset and more severe conditions. In rare cases, the initial spastic paraplegia could evolve to rapidly progressive amyotrophic lateral sclerosis (ALS). CONCLUSIONS We reported the first autosomal dominant SPG18 pedigree in Chinese Han population, which added more pathogenic evidence for V168M mutation. As more SPG18 cases reported, the essentials of SPG18 need to be updated in clinical practice. Special attentions should be given in gene test for upper motor neuron disorders in case of missing heterozygous mutations in ERLIN2.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jin-Long Zou
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Shuang He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Shu-Jian Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|