1
|
Coles NP, Elsheikh S, Quesnel A, Butler L, Jennings C, Tarzi C, Achadu OJ, Islam M, Kalesh K, Occhipinti A, Angione C, Marles-Wright J, Koss DJ, Thomas AJ, Outeiro TF, Filippou PS, Khundakar AA. Molecular Insights into α-Synuclein Fibrillation: A Raman Spectroscopy and Machine Learning Approach. ACS Chem Neurosci 2025. [PMID: 39875340 DOI: 10.1021/acschemneuro.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein. Monomeric α-synuclein was produced, purified, and subjected to a 7-day fibrillation assay to generate preformed fibrils. Stages of α-synuclein fibrillation were analyzed using Raman spectroscopy, with aggregation confirmed through negative staining transmission electron microscopy, mass spectrometry, and light scattering analyses. A machine learning pipeline incorporating principal component analysis and uniform manifold approximation and projection was used to analyze the Raman spectral data and identify significant peaks, resulting in differentiation between sample groups. Notable spectral shifts in α-synuclein were found in various stages of aggregation. Early changes (D1) included increases in α-helical structures (1303, 1330 cm-1) and β-sheet formation (1045 cm-1), with reductions in COO- and CH2 bond regions (1406, 1445 cm-1). By D4, these structural shifts persist with additional β-sheet features. At D7, a decrease in β-sheet H-bonding (1625 cm-1) and tyrosine ring breathing (830 cm-1) indicates further structural stabilization, suggesting a shift from initial helical structures to stabilized β-sheets and aggregated fibrils. Additionally, alterations in peaks related to tyrosine, alanine, proline, and glutamic acid were identified, emphasizing the role of these amino acids in intramolecular interactions during the transition from α-helical to β-sheet conformational states in α-synuclein fibrillation. This approach offers insight into α-synuclein aggregation, enhancing the understanding of its role in Lewy body disease pathophysiology and potential diagnostic relevance.
Collapse
Affiliation(s)
- Nathan P Coles
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Suzan Elsheikh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Lucy Butler
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Claire Jennings
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Ojodomo J Achadu
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Karunakaran Kalesh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Annalisa Occhipinti
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Claudio Angione
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Jon Marles-Wright
- Biosciences Institute, Cookson Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David J Koss
- Division of Neuroscience, School of Medicine, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland
| | - Alan J Thomas
- Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen 37077, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen 37077, Germany
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Oldani EG, Stillman NH, Dohoney RA, Baysah CZ, Kumar S. Inhibition of Phosphorylated Alpha-Synuclein Aggregation by Synthetic Protein Mimetics and Foldamers. ACS Chem Neurosci 2025; 16:152-160. [PMID: 39719105 DOI: 10.1021/acschemneuro.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The formation of Lewy bodies (LB) is a pathological hallmark for synucleinopathies, which is an umbrella term for many diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. One of the main components of LB is the aggregates of phosphorylated modification of α-Synuclein at residue 129 (αS-129), a neuronal protein expressed in the dopaminergic neurons in the brain. There are equivocal results about the role of αS-129, suggesting its involvement in both potentiating pathology and a functional role to rescue pathology. Regardless, a potential therapeutic strategy for LB-based pathologies could be the identification of inhibitors of both αS and αS-129 aggregation. However, to the best of our knowledge, there are no reports of ligands that can potently inhibit the aggregation of αS-129. Our group has recently identified potent antagonists of αS aggregation based on the oligopyridylamide (synthetic protein mimetics) and oligoquinoline (foldamers) scaffolds. Both ligands were potent antagonists of αS aggregation-mediated disease phenotypes in various PD models. Here, we tested both ligands against αS-129 aggregation and the coaggregation of αS and αS-129 (αS/αS-129). Both ligands were potent antagonists of αS-129 aggregation and coaggregation of αS/αS-129 in biophysical and cellular models of PD. Both ligands rescued cell toxicity mediated by the coaggregation of αS/αS-129. To the best of our knowledge, these are the first ligands that potently inhibit the major component of LB. This finding will aid in the development of therapeutic insights into aggregation-related synucleinopathies.
Collapse
Affiliation(s)
- Emily G Oldani
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado 80210, United States
| | - Nicholas H Stillman
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Ryan A Dohoney
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Charles Zuwu Baysah
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
3
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Peña‐Díaz S, Ventura S. The small molecule ZPD-2 inhibits the aggregation and seeded polymerisation of C-terminally truncated α-Synuclein. FEBS J 2024; 291:5290-5304. [PMID: 39462681 PMCID: PMC11616005 DOI: 10.1111/febs.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Protein aggregation, particularly the formation of amyloid fibrils, is associated with numerous human disorders, including Parkinson's disease. This neurodegenerative condition is characterised by the accumulation of α-Synuclein amyloid fibrils within intraneuronal deposits known as Lewy bodies or neurites. C-terminally truncated forms of α-Synuclein are frequently observed in these inclusions in the brains of patients, and their increased aggregation propensity suggests a role in the disease's pathogenesis. This study demonstrates that the small molecule ZPD-2 acts as a potent inhibitor of both the spontaneous and seeded amyloid polimerisation of C-terminally truncated α-Synuclein by interfering with early aggregation intermediates. This dual activity positions this molecule as a promising candidate for therapeutic development in treating synucleinopathies.
Collapse
Affiliation(s)
- Samuel Peña‐Díaz
- Institut de Biotecnologia i BiomedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterraSpain
- Present address:
Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhusDenmark
| | - Salvador Ventura
- Institut de Biotecnologia i BiomedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterraSpain
- Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| |
Collapse
|
5
|
Matsuo K, Asamitsu S, Maeda K, Suzuki H, Kawakubo K, Komiya G, Kudo K, Sakai Y, Hori K, Ikenoshita S, Usuki S, Funahashi S, Oizumi H, Takeda A, Kawata Y, Mizobata T, Shioda N, Yabuki Y. RNA G-quadruplexes form scaffolds that promote neuropathological α-synuclein aggregation. Cell 2024; 187:6835-6848.e20. [PMID: 39426376 DOI: 10.1016/j.cell.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are triggered by α-synuclein aggregation, triggering progressive neurodegeneration. However, the intracellular α-synuclein aggregation mechanism remains unclear. Herein, we demonstrate that RNA G-quadruplex assembly forms scaffolds for α-synuclein aggregation, contributing to neurodegeneration. Purified α-synuclein binds RNA G-quadruplexes directly through the N terminus. RNA G-quadruplexes undergo Ca2+-induced phase separation and assembly, accelerating α-synuclein sol-gel phase transition. In α-synuclein preformed fibril-treated neurons, RNA G-quadruplex assembly comprising synaptic mRNAs co-aggregates with α-synuclein upon excess cytoplasmic Ca2+ influx, eliciting synaptic dysfunction. Forced RNA G-quadruplex assembly using an optogenetic approach evokes α-synuclein aggregation, causing neuronal dysfunction and neurodegeneration. The administration of 5-aminolevulinic acid, a protoporphyrin IX prodrug, prevents RNA G-quadruplex phase separation, thereby attenuating α-synuclein aggregation, neurodegeneration, and progressive motor deficits in α-synuclein preformed fibril-injected synucleinopathic mice. Therefore, Ca2+ influx-induced RNA G-quadruplex assembly accelerates α-synuclein phase transition and aggregation, potentially contributing to synucleinopathies.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 50-0047, Japan
| | - Kohei Maeda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization Sendai Medical Center, Sendai 983-8520, Japan
| | - Kosuke Kawakubo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Ginji Komiya
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kenta Kudo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yusuke Sakai
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Susumu Ikenoshita
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Shiori Funahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-8555, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-8555, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
6
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
7
|
Akilandeswari G, Varshashankari V, Muthusamy S, Aarthy M, Thamizhvani K, Mercyjayapriya J, Ashokraj S, Mohandass P, Prem S, Ayyadurai N. Photocrosslinkable triple helical protein with enhanced higher-order formation for biomaterial applications. J Biomed Mater Res A 2024; 112:1632-1645. [PMID: 38553971 DOI: 10.1002/jbm.a.37716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 08/02/2024]
Abstract
Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Gopalan Akilandeswari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Vijayakumar Varshashankari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Shalini Muthusamy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Karthigeyan Thamizhvani
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Jebakumar Mercyjayapriya
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pachaiyappan Mohandass
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Prem
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Thompson M, Martín M, Olmo TS, Rajesh C, Koo PK, Bolognesi B, Lehner B. Massive experimental quantification of amyloid nucleation allows interpretable deep learning of protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603366. [PMID: 39071305 PMCID: PMC11275847 DOI: 10.1101/2024.07.13.603366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Protein aggregation is a pathological hallmark of more than fifty human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the amyloid nucleation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts amyloid nucleation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict amyloid nucleation.
Collapse
Affiliation(s)
- Mike Thompson
- Systems and Synthetic Biology, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Mariano Martín
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Trinidad Sanmartín Olmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chandana Rajesh
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter K. Koo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Systems and Synthetic Biology, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
9
|
Imaura R, Kawata Y, Matsuo K. Salt-Induced Hydrophobic C-Terminal Region of α-Synuclein Triggers Its Fibrillation under the Mimic Physiologic Condition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20537-20549. [PMID: 39285698 DOI: 10.1021/acs.langmuir.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (αS) causes Parkinson's disease due to the structural alteration into amyloid fibrils that form after the interaction with synaptic membranes in neurons. To understand the alternation mechanism, the effect of salt (NaCl) on the interaction of αS with synaptic mimic membrane was characterized at the molecular level because salt triggered the amyloid fibril formation. The membrane-bound conformation (or the initial conformation before fibrillation) showed that NaCl decreased the number of helical structures and Tyr residues interacting with the membrane surface compared to when NaCl was absent, implying an increase in solvent-exposed regions. The N-terminal region of αS interacted with the membrane, forming the helical structures regardless of NaCl, while the C-terminal region formed a random structure with weak membrane interaction, but NaCl inhibited the interaction of its hydrophobic area, suggesting that salt promoted amyloid fibril formations by exposing the hydrophobic C-terminal region, which can intermolecularly interact with free αS.
Collapse
Affiliation(s)
- Ryota Imaura
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
| | - Yasushi Kawata
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Koichi Matsuo
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
- Research Institute for Synchrotron Radiation Science, Hiroshima University, Hiroshima 739-0046, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Hiroshima 739-0046, Japan
| |
Collapse
|
10
|
Chakraborty G, Patra N. Elucidating the Molecular Basis of 14-3-3 Interaction with α-Synuclein: Insights from Molecular Dynamics Simulations and the Design of a Novel Protein-Protein Interaction Inhibitor. J Phys Chem B 2024; 128:7068-7085. [PMID: 38857533 DOI: 10.1021/acs.jpcb.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Parkinson's disease is a widespread age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain along with the appearance of protein aggregates, termed as "Lewy bodies" in the surviving neuronal cells. The components of Lewy bodies include proteins such as α-synuclein, 14-3-3, Parkin, and LRRK2, along with other cellular organelles, which, in their native state, perform a plethora of vital biological functions within the human biome. Formation of these aggregates renders these components inactive, thereby interfering with homeostasis. In this regard, the current study attempts to investigate the complexation behavior of all human-based 14-3-3 isoforms with α-synuclein via a combination of classical and enhanced sampling techniques and thereby determine the causality of these protein-protein interactions. The study indicated that upon complexation, the aggregation propensity of both 14-3-3 and α-synuclein increases, and this increment is propelled by the interfacial residues on either protein. Furthermore, mutagenesis studies revealed that Lys214 of 14-3-3 (henceforth termed K214A) is crucial for the formation of this binary complex. Principal component analysis combined with clustering studies unveiled the stability of these complexes in terms of their conformational distribution across the entire MD trajectory. For K214A, these clustered states were sparsely located, thereby making the transitions between them slightly difficult. Dynamic cross-correlation maps (DCCM) revealed the role of residues in the range 80-130 of 14-3-3 having a potential allosteric role in driving this complexation process. Finally, a novel peptide-based supramolecular inhibitor was designed, which exhibited higher proficiency in limiting the 14-3-3/α-synuclein interaction compared to the previous inhibitor model. It was also revealed that the presence of this inhibitor induces structural rigidity in α-synuclein, making changes in its conformations extremely difficult, as observed through Umbrella Sampling studies. Based on available information, the current study provides an insight into the molecular-level understanding of protein-protein interactions underlying Parkinson's disease and adds on to the methods of devising novel therapeutic approaches to treat the same.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
11
|
Maraldo A, Rnjak-Kovacina J, Marquis C. Tyrosine - a structural glue for hierarchical protein assembly. Trends Biochem Sci 2024; 49:633-648. [PMID: 38653686 DOI: 10.1016/j.tibs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Protein self-assembly, guided by the interplay of sequence- and environment-dependent liquid-liquid phase separation (LLPS), constitutes a fundamental process in the assembly of numerous intrinsically disordered proteins. Heuristic examination of these proteins has underscored the role of tyrosine residues, evident in their conservation and pivotal involvement in initiating LLPS and subsequent liquid-solid phase transitions (LSPT). The development of tyrosine-templated constructs, designed to mimic their natural counterparts, emerges as a promising strategy for creating adaptive, self-assembling systems with diverse applications. This review explores the central role of tyrosine in orchestrating protein self-assembly, delving into key interactions and examining its potential in innovative applications, including responsive biomaterials and bioengineering.
Collapse
Affiliation(s)
- Anton Maraldo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | - Christopher Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Lloyd GM, Quintin S, Sorrentino ZA, Gorion KMM, Bell BM, Long B, Paterno G, Giasson BI. A multiverse of α-synuclein: investigation of prion strain properties with carboxyl-terminal truncation specific antibodies in animal models. Acta Neuropathol Commun 2024; 12:91. [PMID: 38858742 PMCID: PMC11163735 DOI: 10.1186/s40478-024-01805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of misfolded α-Synuclein (αSyn) in the brain. These conditions manifest with diverse clinical and pathophysiological characteristics. This disease diversity is hypothesized to be driven by αSyn strains with differing biophysical properties, potentially influencing prion-type propagation and consequentially the progression of illness. Previously, we investigated this hypothesis by injecting brain lysate (seeds) from deceased individuals with various synucleinopathies or human recombinant αSyn preformed fibrils (PFFs) into transgenic mice overexpressing either wild type or A53T human αSyn. In the studies herein, we expanded on these experiments, utilizing a panel of antibodies specific for the major carboxyl-terminally truncated forms of αSyn (αSynΔC). These modified forms of αSyn are found enriched in human disease brains to inform on potential strain-specific proteolytic patterns. With monoclonal antibodies specific for human αSyn cleaved at residues 103, 114, 122, 125, and 129, we demonstrate that multiple system atrophy (MSA) seeds and PFFs induce differing neuroanatomical spread of αSyn pathology associated with host specific profiles. Overall, αSyn cleaved at residue 103 was most widely present in the induced pathological inclusions. Furthermore, αSynΔC-positive inclusions were present in astrocytes, but more frequently in activated microglia, with patterns dependent on host and inoculum. These findings support the hypothesis that synucleinopathy heterogeneity might stem from αSyn strains with unique biochemical properties that include proteolytic processing, which could result in dominant strain properties.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stephan Quintin
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brooke Long
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
15
|
Siwecka N, Saramowicz K, Galita G, Rozpędek-Kamińska W, Majsterek I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023; 15:2051. [PMID: 37631265 PMCID: PMC10459316 DOI: 10.3390/pharmaceutics15082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (N.S.); (K.S.); (G.G.); (W.R.-K.)
| |
Collapse
|
16
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
17
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
18
|
Guo Q, Kawahata I, Jia W, Wang H, Cheng A, Yabuki Y, Shioda N, Fukunaga K. α-Synuclein decoy peptide protects mice against α-synuclein-induced memory loss. CNS Neurosci Ther 2023; 29:1547-1560. [PMID: 36786129 PMCID: PMC10173724 DOI: 10.1111/cns.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
AIMS We previously found that a decoy peptide derived from the C-terminal sequence of α-Synuclein (αSyn) prevents cytotoxic αSyn aggregation caused by fatty acid-binding protein 3 (FABP3) in vitro. In this study, we continued to utilize αSyn-derived peptides to further validate their effects on αSyn neurotoxicity and behavioral impairments in αSyn preformed fibrils (PFFs)-injected mouse model of Parkinson's disease (PD). METHODS Mice were injected with αSyn PFFs in the bilateral olfactory bulb (OB) and then were subjected to behavioral analysis at 2-week intervals post-injection. Peptides nasal administration was initiated one week after injection. Changes in phosphorylation of αSyn and neuronal damage in the OB were measured using immunostaining at week 4. The effect of peptides on the interaction between αSyn and FABP3 was examined using co-immunoprecipitation. RESULTS αSyn PFF-injected mice showed significant memory loss but no motor function impairment. Long-term nasal treatment with peptides effectively prevented memory impairment. In peptide-treated αSyn PFF-injected mice, the peptides entered the OB smoothly through the nasal cavity and were mainly concentrated in neurons in the mitral cell layer, significantly suppressing the excessive phosphorylation of αSyn and reducing the formation of αSyn-FABP3 oligomers, thereby preventing neuronal death. The addition of peptides also blocked the interaction of αSyn and FABP3 at the recombinant protein level, and its effect was strongest at molar concentrations comparable to those of αSyn and FABP3. CONCLUSIONS Our findings suggest that the αSyn decoy peptide represents a novel therapeutic approach for reducing the accumulation of toxic αSyn-FABP3 oligomers in the brain, thereby preventing the progression of synucleinopathies.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,BRI Pharma Incorporated, Sendai, Japan
| |
Collapse
|
19
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Seetaloo N, Zacharopoulou M, Stephens AD, Kaminski Schierle GS, Phillips JJ. Millisecond Hydrogen/Deuterium-Exchange Mass Spectrometry Approach to Correlate Local Structure and Aggregation in α-Synuclein. Anal Chem 2022; 94:16711-16719. [DOI: 10.1021/acs.analchem.2c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Neeleema Seetaloo
- Living Systems Institute, University of Exeter, Stocker Road, ExeterEX4 4QD, U.K
| | - Maria Zacharopoulou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CambridgeCB3 0AS, U.K
| | - Amberley D. Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CambridgeCB3 0AS, U.K
| | - Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CambridgeCB3 0AS, U.K
| | - Jonathan J. Phillips
- Living Systems Institute, University of Exeter, Stocker Road, ExeterEX4 4QD, U.K
- Alan Turing Institute, British Library, LondonNW1 2DB, U.K
| |
Collapse
|
21
|
Jin M, Matsumoto S, Ayaki T, Yamakado H, Taguchi T, Togawa N, Konno A, Hirai H, Nakajima H, Komai S, Ishida R, Chiba S, Takahashi R, Takao T, Hirotsune S. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat Commun 2022; 13:6880. [PMID: 36371400 PMCID: PMC9653393 DOI: 10.1038/s41467-022-34555-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan ,grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199 China
| | - Sakiko Matsumoto
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Takashi Ayaki
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Hodaka Yamakado
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Tomoyuki Taguchi
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Natsuko Togawa
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Ayumu Konno
- grid.256642.10000 0000 9269 4097Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511 Japan
| | - Hirokazu Hirai
- grid.256642.10000 0000 9269 4097Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511 Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Osaka Metropolitan University Graduate School of Science, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Shoji Komai
- grid.260493.a0000 0000 9227 2257Department of Science and Technology, Nara Institute of Science Technology, Ikoma, Nara 630-0192 Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Syuhei Chiba
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Ryosuke Takahashi
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Toshifumi Takao
- grid.136593.b0000 0004 0373 3971Laboratory of Protein Profiling and Functional Proteomics, Osaka University Institute for Protein Research, Suita, Osaka 565-0871 Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| |
Collapse
|
22
|
Jin M, Matsumoto S, Ayaki T, Yamakado H, Taguchi T, Togawa N, Konno A, Hirai H, Nakajima H, Komai S, Ishida R, Chiba S, Takahashi R, Takao T, Hirotsune S. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat Commun 2022. [PMID: 36371400 DOI: 10.1038/s41467-022-34555-4.pmid:36371400;pmcid:pmc9653393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Sakiko Matsumoto
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Togawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Osaka Metropolitan University Graduate School of Science, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shoji Komai
- Department of Science and Technology, Nara Institute of Science Technology, Ikoma, Nara, 630-0192, Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Syuhei Chiba
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Osaka University Institute for Protein Research, Suita, Osaka, 565-0871, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
23
|
Lin Y, Ito D, Yoo JM, Lim MH, Yu W, Kawata Y, Lee YH. Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Front Cell Dev Biol 2022; 10:707417. [PMID: 35747692 PMCID: PMC9209734 DOI: 10.3389/fcell.2022.707417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Aggregation of intrinsically disordered α-synuclein (αSN) under various conditions is closely related to synucleinopathies. Although various biological membranes have shown to alter the structure and aggregation propensity of αSN, a thorough understanding of the molecular and mechanical mechanism of amyloidogenesis in membranes remains unanswered. Herein, we examined the structural changes, binding properties, and amyloidogenicity of three variations of αSN mutants under two types of liposomes, 1,2-Dioleoyl-sn-glycero-3-Phosphocholine (DOPC) and presynaptic vesicle mimetic (Mimic) membranes. While neutrally charged DOPC membranes elicited marginal changes in the structure and amyloid fibrillation of αSNs, negatively charged Mimic membranes induced dramatic helical folding and biphasic amyloid generation. At low concentration of Mimic membranes, the amyloid fibrillation of αSNs was promoted in a dose-dependent manner. However, further increases in the concentration constrained the fibrillation process. These results suggest the dual effect of Mimic membranes on regulating the amyloidogenesis of αSN, which is rationalized by the amyloidogenic structure of αSN and condensation-dilution of local αSN concentration. Finally, we propose physicochemical properties of αSN and membrane surfaces, and their propensity to drive electrostatic interactions as decisive factors of amyloidogenesis.
Collapse
Affiliation(s)
- Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Institute for Protein Research, Osaka University, Suita, Japan
- *Correspondence: Yuxi Lin, ; Young-Ho Lee,
| | - Dai Ito
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Je Min Yoo
- Biographene, Los Angeles, CA, United States
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Institute for Protein Research, Osaka University, Suita, Japan
- Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Yuxi Lin, ; Young-Ho Lee,
| |
Collapse
|
24
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
25
|
Huang S, Mo X, Wang J, Ye X, Yu H, Liu Y. α-Synuclein phase separation and amyloid aggregation are modulated by C-terminal truncations. FEBS Lett 2022; 596:1388-1400. [PMID: 35485974 DOI: 10.1002/1873-3468.14361] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022]
Abstract
The aggregation of α-synuclein (α-Syn) is a key pathological hallmark of Parkinson's disease (PD). α-Syn undergoes liquid-liquid phase separation (LLPS) to drive amyloid aggregation. How the LLPS of α-Syn is regulated remains largely unknown. Here, we discovered that the C-terminal region modulates α-Syn phase separation through electrostatic interactions. The wild-type (WT) and PD disease-related truncated α-Syn can co-exist in the condensates. The truncated α-Syn could dramatically promote WT α-Syn phase separation. Further studies demonstrated that the truncated α-Syn accelerated WT α-Syn turning to amyloid aggregates by modulation of phase separation. Together, our findings disclose the role of the C-terminal domain in the LLPS of α-Syn and pave the path for understanding the mechanism of truncated α-Syn in PD pathology.
Collapse
Affiliation(s)
- Shuai Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoli Mo
- Biology Department, Clark University, Worcester, Massachusetts, 01610, USA
| | - Jieyi Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyi Ye
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
26
|
Ahmed J, Fitch TC, Donnelly CM, Joseph JA, Ball TD, Bassil MM, Son A, Zhang C, Ledreux A, Horowitz S, Qin Y, Paredes D, Kumar S. Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly. Nat Commun 2022; 13:2273. [PMID: 35477706 PMCID: PMC9046208 DOI: 10.1038/s41467-022-29724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays is utilized to validate αS sequences and their structural characteristics that are essential for aggregation and propagation of PD phenotypes. The study aids in developing significant mechanistic and therapeutic insights into various facets of αS aggregation, which will pave the way for effective treatments for PD.
Collapse
Affiliation(s)
- Jemil Ahmed
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA.,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Tessa C Fitch
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Courtney M Donnelly
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Johnson A Joseph
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Tyler D Ball
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Mikaela M Bassil
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Ahyun Son
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Aurélie Ledreux
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Scott Horowitz
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA.,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Daniel Paredes
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Sunil Kumar
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA. .,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA. .,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
27
|
Fan HF, Chen WL, Chen YZ, Huang JW, Shen YX. Change in the Oligomeric State of α-Synuclein Variants in Living Cells. ACS Chem Neurosci 2022; 13:1143-1164. [PMID: 35394271 DOI: 10.1021/acschemneuro.1c00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accumulation of β-sheet-rich α-synuclein (α-Syn) protein in human brain cells is a pathological hallmark of Parkinson's disease (PD). Moreover, it has been reported that familial PD mutations (A30P, E46K, H50Q, G51D, and A53T) accumulate at an accelerated rate both in vivo and in vitro. In addition, accumulations of various C-terminal α-Syn truncations, such as C-terminal-truncated N103 α-synuclein (N103), were found in an aggregated form in the brain tissue of PD patients. Fluorescent protein-tagged wild-type α-Syn, A30P, E46K, H50Q, G51D, A53T, and N103 were transfected into HEK293T and SHSY5Y cells, and their diffusion behaviors were investigated with a custom-built fluorescence microscope system. Based on our experimental results, the oligomerization of α-Syn is a time-dependent process in both HEK293T and SHSY5Y cells, and the oligomer state approaches a plateau after 48 h of transfection. The change in the oligomeric state of E46K, H50Q, and G51D exhibited a similar trend to the wild type at a lower concentration but became intense at a higher concentration. A53T and N103 possess smaller diffusion coefficients than wild-type α-synuclein and other family PD mutations, indicating that these two mutants could form higher oligomeric states or stronger interactions in HEK293T and SHSY5Y cells. In contrast, the smallest oligomer and the lowest intracellular interaction among all investigated α-Syn variants were found for A30P. These phenomena indicated the presence of different pathogeneses among familial PD mutants and C-terminal α-Syn truncations.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 80424, Kaohsiung 804, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 80424, Kaohsiung 804, Taiwan
- Aerosol Science Research Center, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 80424, Kaohsiung 804, Taiwan
| | - Wen-Ling Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| | - Yan-Zhow Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| | - Jian-Wei Huang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 80424, Kaohsiung 804, Taiwan
| | - Yu-Xin Shen
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 80424, Kaohsiung 804, Taiwan
| |
Collapse
|
28
|
Shear Stress Induces α-Synuclein Aggregation Due to a Less Strained Protein Backbone and Protein Tyrosyl Groups Do Not Intervene in the Aggregation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Parkinson’s disease (PD) is an increasingly prevalent and currently incurable neurodegenerative disorder. The aggregation of the amyloid disordered protein α-synuclein (Syn) has been implicated in the development of PD. In the literature, it has been suggested that tyrosine residues of Syn play an important role in the interactions established during the fibrillation process. Herein, the prevalence of the referred interactions under shear stress conditions of Nα-acetyl-L-tyrosinamide (NAYA) and of Syn solutions by using membrane centrifugal filters with different cut-off of 200 nm, 100 kDa, 50 kDa and 30 kDa, under centrifugation conditions, were investigated. In order to determine the nature of the interactions involving the protein tyrosine residues the NAYA compound, which mimics the peptide bonds in protein and also possesses a tyrosyl group similar to the tyrosyl groups found in the Syn protein molecular structure, was used. It is expected that for a small molecule, such as NAYA, no molecular association occurs, contrary to what exists in the Syn protein solutions, which can more adequately retrieve the type of interactions formed, involving the tyrosyl group. Therefore, sensing the tyrosyl group absorption, spectroscopic techniques, in particular, were used. For NAYA, an intramolecular interaction between the tyrosyl group and the peptide bond was evidenced. For NAYA and Syn, it was observed that decreasing the membrane centrifugal filters pore size, under centrifugation conditions, was concomitant with the minimization of the intramolecular interactions between the tyrosyl group and the peptide bond. With this, it is likely to assume that shear stress conditions in the Syn solutions propel protein aggregation by a less strained protein backbone. Contrary to the centrifugation of NAYA solutions, centrifuging Syn solutions revealed molecular association and a progressive exposure of protein tyrosyl groups to water. Thus, we can also infer that shear stress conditions in the Syn solutions cause the protein tyrosyl groups to not intervene in the protein aggregation.
Collapse
|
29
|
Farzadfard A, Pedersen JN, Meisl G, Somavarapu AK, Alam P, Goksøyr L, Nielsen MA, Sander AF, Knowles TPJ, Pedersen JS, Otzen DE. The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Commun Biol 2022; 5:123. [PMID: 35145226 PMCID: PMC8831632 DOI: 10.1038/s42003-022-03059-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson’s disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard. Farzadfard et al. present a comprehensive analysis of a range of C-terminal truncations of aSN, linking the importance of high C-terminus charge for decreased fibrillation rates. The ability to formation oligomers, to disrupt synthetic vesicles and cell toxicity was reduced with truncated aSN, aiding in understanding of the intramolecular interactions of aSN which promote/inhibit aggregation.
Collapse
Affiliation(s)
- Azad Farzadfard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Arun Kumar Somavarapu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Louise Goksøyr
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Adam Frederik Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark. .,Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark.
| |
Collapse
|
30
|
Robustelli P, Ibanez-de-Opakua A, Campbell-Bezat C, Giordanetto F, Becker S, Zweckstetter M, Pan AC, Shaw DE. Molecular Basis of Small-Molecule Binding to α-Synuclein. J Am Chem Soc 2022; 144:2501-2510. [PMID: 35130691 PMCID: PMC8855421 DOI: 10.1021/jacs.1c07591] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Intrinsically disordered
proteins (IDPs) are implicated in many
human diseases. They have generally not been amenable to conventional
structure-based drug design, however, because their intrinsic conformational
variability has precluded an atomic-level understanding of their binding
to small molecules. Here we present long-time-scale, atomic-level
molecular dynamics (MD) simulations of monomeric α-synuclein
(an IDP whose aggregation is associated with Parkinson’s disease)
binding the small-molecule drug fasudil in which the observed protein–ligand
interactions were found to be in good agreement with previously reported
NMR chemical shift data. In our simulations, fasudil, when bound,
favored certain charge–charge and π-stacking interactions
near the C terminus of α-synuclein but tended not to form these
interactions simultaneously, rather breaking one of these interactions
and forming another nearby (a mechanism we term dynamic shuttling). Further simulations with small molecules chosen to modify these
interactions yielded binding affinities and key structural features
of binding consistent with subsequent NMR experiments, suggesting
the potential for MD-based strategies to facilitate the rational design
of small molecules that bind with disordered proteins.
Collapse
Affiliation(s)
- Paul Robustelli
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Albert C Pan
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
31
|
Franco A, Cuéllar J, Fernández-Higuero JÁ, de la Arada I, Orozco N, Valpuesta JM, Prado A, Muga A. Truncation-Driven Lateral Association of α-Synuclein Hinders Amyloid Clearance by the Hsp70-Based Disaggregase. Int J Mol Sci 2021; 22:ijms222312983. [PMID: 34884786 PMCID: PMC8657883 DOI: 10.3390/ijms222312983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
The aggregation of α-synuclein is the hallmark of a collective of neurodegenerative disorders known as synucleinopathies. The tendency to aggregate of this protein, the toxicity of its aggregation intermediates and the ability of the cellular protein quality control system to clear these intermediates seems to be regulated, among other factors, by post-translational modifications (PTMs). Among these modifications, we consider herein proteolysis at both the N- and C-terminal regions of α-synuclein as a factor that could modulate disassembly of toxic amyloids by the human disaggregase, a combination of the chaperones Hsc70, DnaJB1 and Apg2. We find that, in contrast to aggregates of the protein lacking the N-terminus, which can be solubilized as efficiently as those of the WT protein, the deletion of the C-terminal domain, either in a recombinant context or as a consequence of calpain treatment, impaired Hsc70-mediated amyloid disassembly. Progressive removal of the negative charges at the C-terminal region induces lateral association of fibrils and type B* oligomers, precluding chaperone action. We propose that truncation-driven aggregate clumping impairs the mechanical action of chaperones, which includes fast protofilament unzipping coupled to depolymerization. Inhibition of the chaperone-mediated clearance of C-truncated species could explain their exacerbated toxicity and higher propensity to deposit found in vivo.
Collapse
Affiliation(s)
- Aitor Franco
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (A.F.); (J.Á.F.-H.); (A.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; (J.C.); (J.M.V.)
| | - José Ángel Fernández-Higuero
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (A.F.); (J.Á.F.-H.); (A.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
| | - Igor de la Arada
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
| | - Natalia Orozco
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José M. Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; (J.C.); (J.M.V.)
| | - Adelina Prado
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (A.F.); (J.Á.F.-H.); (A.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
| | - Arturo Muga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (A.F.); (J.Á.F.-H.); (A.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain; (I.d.l.A.); (N.O.)
- Correspondence:
| |
Collapse
|
32
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
33
|
Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. Br J Pharmacol 2021; 179:23-45. [PMID: 34528272 DOI: 10.1111/bph.15684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lewy bodies that contain aggregated α-synuclein (α-syn) in the dopaminergic (DA) neuron are the main culprit behind neurodegeneration in Parkinson's disease (PD). Besides, mitochondrial dysfunction has a well established and prominent role in the pathogenesis of PD. However, the exact mechanism by which α-syn causes dopaminergic neuronal loss was unclear. Recent evidence suggests that aggregated α-syn localises in the mitochondria and contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-syn in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of PD. However, the exact mechanism by which α-syn permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-syn interactions and how α-syn aggregation modulates mitochondrial homeostasis in PD pathogenesis. We also discuss recent therapeutic interventions targeting α-syn aggregation that may help researchers to design novel therapeutic treatments for PD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
34
|
Fukui N, Yamamoto H, Miyabe M, Aoyama Y, Hongo K, Mizobata T, Kawahata I, Yabuki Y, Shinoda Y, Fukunaga K, Kawata Y. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J Biol Chem 2021; 296:100663. [PMID: 33862084 PMCID: PMC8131325 DOI: 10.1016/j.jbc.2021.100663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson’s disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. To characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3–αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Because this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3–αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Naoya Fukui
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hanae Yamamoto
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Moe Miyabe
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuki Aoyama
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
35
|
Bhak G, Méndez-Ardoy A, Escobedo A, Salvatella X, Montenegro J. An Adhesive Peptide from the C-Terminal Domain of α-Synuclein for Single-Layer Adsorption of Nanoparticles onto Substrates. Bioconjug Chem 2020; 31:2759-2766. [PMID: 33170662 DOI: 10.1021/acs.bioconjchem.0c00544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two-dimensional (2D) homogeneous assembly of nanoparticle monolayer arrays onto a broad range of substrates constitutes an important challenge for chemistry, nanotechnology, and material science. α-Synuclein (αS) is an intrinsically disordered protein associated with neuronal protein complexes and has a high degree of structural plasticity and chaperone activity. The C-terminal domain of αS has been linked to the noncovalent interactions of this protein with biological targets and the activity of αS in presynaptic connections. Herein, we have systematically studied peptide fragments of the chaperone-active C-terminal sequence of αS and identified a 17-residue peptide that preserves the versatile binding nature of αS. Attachment of this short peptide to gold nanoparticles afforded colloidally stable nanoparticle suspensions that allowed the homogeneous 2D adhesion of the conjugates onto a wide variety of surfaces, including the formation of crystalline nanoparticle superlattices. The peptide sequence and the strategy reported here describe a new adhesive molecule for the controlled monolayer adhesion of metal nanoparticles and sets a stepping-stone toward the potential application of the adhesive properties of αS.
Collapse
Affiliation(s)
- Ghibom Bhak
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
36
|
Biswas B, Roy S, Mondal JA, Singh PC. Interaction of α‐Synuclein with Phospholipids and the Associated Restructuring of Interfacial Lipid Water: An Interface‐Selective Vibrational Spectroscopic Study. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswajit Biswas
- School of Chemical Sciences Indian Association for the Cultivation of Sciences 2A &2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| | - Subhadip Roy
- Radiation & Photochemistry Division Bhabha Atomic Research Centre Homi Bhabha National Institute Trombay Mumbai 400085 India
| | - Jahur Alam Mondal
- Radiation & Photochemistry Division Bhabha Atomic Research Centre Homi Bhabha National Institute Trombay Mumbai 400085 India
| | - Prashant Chandra Singh
- School of Chemical Sciences Indian Association for the Cultivation of Sciences 2A &2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| |
Collapse
|
37
|
Biswas B, Roy S, Mondal JA, Singh PC. Interaction of α-Synuclein with Phospholipids and the Associated Restructuring of Interfacial Lipid Water: An Interface-Selective Vibrational Spectroscopic Study. Angew Chem Int Ed Engl 2020; 59:22731-22737. [PMID: 32865870 DOI: 10.1002/anie.202011179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Interaction of α-Synuclein (αS) with biological lipids is crucial for the onset of its fibrillation at the cell membrane/water interface. Probed herein is the interaction of αS with membrane-mimicking lipid monolayer/water interfaces. The results depict that αS interacts negligibly with zwitterionic lipids, but strongly affects the pristine air/water and charged lipid/water interfaces by perturbing the structure and orientation of the interfacial water. The net negative αS (-9 in bulk water; pH 7.4) reorients the water as hydrogen-up (H-up) at the air/water interface, and electrostatically interacts with positively charged lipids, making the interface nearly net neutral. αS also interacts with negatively charged lipids: the net H-up orientation of the interfacial water decreases at the anionic lipid/water interface, revealing a domain-specific interaction of net negative αS with the negatively charged lipids at the membrane surface.
Collapse
Affiliation(s)
- Biswajit Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Subhadip Roy
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai, 400085, India
| | - Jahur Alam Mondal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai, 400085, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
38
|
Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21176208. [PMID: 32867340 PMCID: PMC7503639 DOI: 10.3390/ijms21176208] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
The abundance of intrinsic disorder in the protein realm and its role in a variety of physiological and pathological cellular events have strengthened the interest of the scientific community in understanding the structural and dynamical properties of intrinsically disordered proteins (IDPs) and regions (IDRs). Attempts at rationalizing the general principles underlying both conformational properties and transitions of IDPs/IDRs must consider the abundance of charged residues (Asp, Glu, Lys, and Arg) that typifies these proteins, rendering them assimilable to polyampholytes or polyelectrolytes. Their conformation strongly depends on both the charge density and distribution along the sequence (i.e., charge decoration) as highlighted by recent experimental and theoretical studies that have introduced novel descriptors. Published experimental data are revisited herein in the frame of this formalism, in a new and possibly unitary perspective. The physicochemical properties most directly affected by charge density and distribution are compaction and solubility, which can be described in a relatively simplified way by tools of polymer physics. Dissecting factors controlling such properties could contribute to better understanding complex biological phenomena, such as fibrillation and phase separation. Furthermore, this knowledge is expected to have enormous practical implications for the design, synthesis, and exploitation of bio-derived materials and the control of natural biological processes.
Collapse
|
39
|
Curry AM, Fernàndez RD, Pagani TD, Abeyawardhane DL, Trahan ML, Lucas HR. Mapping of Photochemically-Derived Dityrosine across Fe-Bound N-Acetylated α-Synuclein. Life (Basel) 2020; 10:life10080124. [PMID: 32726960 PMCID: PMC7459884 DOI: 10.3390/life10080124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurological disease and belongs to a group of neurodegenerative disorders called synucleinopathies in which pathological aggregates of N-terminally acetylated α-synuclein (NAcα-Syn) accumulate in various regions of the brain. In PD, these NAcα-Syn aggregates have been found to contain covalent dityrosine crosslinks, which can occur either intermolecularly or intramolecularly. Cerebral metal imbalance is also a hallmark of PD, warranting investigations into the effects of brain biometals on NAcα-Syn. NAcα-Syn is an intrinsically disordered protein, and metal-mediated conformational modifications of this structurally dynamic protein have been demonstrated to influence its propensity for dityrosine formation. In this study, a library of tyrosine-to-phenylalanine (Y-to-F) NAcα-Syn constructs were designed in order to elucidate the nature and the precise residues involved in dityrosine crosslinking of Fe-bound NAcα-Syn. The structural capacity of each mutant to form dityrosine crosslinks was assessed using Photo-Induced Cross-Linking of Unmodified Proteins (PICUP), demonstrating that coordination of either FeIII or FeII to NAcα-Syn inhibits dityrosine crosslinking among the C-terminal residues. We further demonstrate that Y39 is the main contributor to dityrosine formation of Fe-bound NAcα-Syn, while Y125 is the main residue involved in dityrosine crosslinks in unmetalated NAcα-Syn. Our results confirm that iron coordination has a global effect on NAcα-Syn structure and reactivity.
Collapse
|
40
|
Sorrentino ZA, Giasson BI. The emerging role of α-synuclein truncation in aggregation and disease. J Biol Chem 2020; 295:10224-10244. [PMID: 32424039 DOI: 10.1074/jbc.rev120.011743] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αsyn) is an abundant brain neuronal protein that can misfold and polymerize to form toxic fibrils coalescing into pathologic inclusions in neurodegenerative diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. These fibrils may induce further αsyn misfolding and propagation of pathologic fibrils in a prion-like process. It is unclear why αsyn initially misfolds, but a growing body of literature suggests a critical role of partial proteolytic processing resulting in various truncations of the highly charged and flexible carboxyl-terminal region. This review aims to 1) summarize recent evidence that disease-specific proteolytic truncations of αsyn occur in Parkinson's disease, Lewy body dementia, and multiple system atrophy and animal disease models; 2) provide mechanistic insights on how truncation of the amino and carboxyl regions of αsyn may modulate the propensity of αsyn to pathologically misfold; 3) compare experiments evaluating the prion-like properties of truncated forms of αsyn in various models with implications for disease progression; 4) assess uniquely toxic properties imparted to αsyn upon truncation; and 5) discuss pathways through which truncated αsyn forms and therapies targeted to interrupt them. Cumulatively, it is evident that truncation of αsyn, particularly carboxyl truncation that can be augmented by dysfunctional proteostasis, dramatically potentiates the propensity of αsyn to pathologically misfold into uniquely toxic fibrils with modulated prion-like seeding activity. Therapeutic strategies and experimental paradigms should operate under the assumption that truncation of αsyn is likely occurring in both initial and progressive disease stages, and preventing truncation may be an effective preventative strategy against pathologic inclusion formation.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN, van Oosten-Hawle P, Radford SE, Brockwell DJ. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 2020; 27:249-259. [PMID: 32157247 PMCID: PMC7100612 DOI: 10.1038/s41594-020-0384-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid β-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation, and NMR we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this ‘master-controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the PreNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid-bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function- a region that could be targeted to prevent aggregation in disease.
Collapse
Affiliation(s)
- Ciaran P A Doherty
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C Good
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jemma Makepeace
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
42
|
Pujols J, Peña-Díaz S, Pallarès I, Ventura S. Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends Mol Med 2020; 26:408-421. [PMID: 32277934 DOI: 10.1016/j.molmed.2020.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
43
|
Afitska K, Priss A, Yushchenko DA, Shvadchak VV. Structural Optimization of Inhibitors of α-Synuclein Fibril Growth: Affinity to the Fibril End as a Crucial Factor. J Mol Biol 2020; 432:967-977. [DOI: 10.1016/j.jmb.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/23/2023]
|
44
|
The Cellular Environment Affects Monomeric α-Synuclein Structure. Trends Biochem Sci 2018; 44:453-466. [PMID: 30527975 DOI: 10.1016/j.tibs.2018.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
The presynaptic protein α-synuclein (aSyn) is an 'intrinsically disordered protein' that is highly dynamic in conformation. Transient intramolecular interactions between its charged N and C termini, and between its hydrophobic region and the C terminus, prevent self-association. These interactions inhibit the formation of insoluble inclusions, which are the pathological hallmark of Parkinson's disease and many other synucleinopathies. This review discusses how these intramolecular interactions are influenced by the specific environment aSyn is in. We discuss how charge, pH, calcium, and salt affect the physiological structure of monomeric aSyn, and how they may favour the formation of toxic structures. The more we understand the dynamic conformations of aSyn, the better we can design desperately needed therapeutics to prevent disease progression.
Collapse
|
45
|
Ma L, Yang C, Zhang X, Li Y, Wang S, Zheng L, Huang K. C-terminal truncation exacerbates the aggregation and cytotoxicity of α-Synuclein: A vicious cycle in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3714-3725. [DOI: 10.1016/j.bbadis.2018.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
|
46
|
Sorrentino ZA, Vijayaraghavan N, Gorion KM, Riffe CJ, Strang KH, Caldwell J, Giasson BI. Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. J Biol Chem 2018; 293:18914-18932. [PMID: 30327435 DOI: 10.1074/jbc.ra118.005603] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Niran Vijayaraghavan
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kimberly-Marie Gorion
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Cara J Riffe
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kevin H Strang
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Jason Caldwell
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Benoit I Giasson
- From the Department of Neuroscience, .,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
47
|
Rawat A, Langen R, Varkey J. Membranes as modulators of amyloid protein misfolding and target of toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1863-1875. [PMID: 29702073 DOI: 10.1016/j.bbamem.2018.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus. Significant number of studies have focused on how monomeric, disaggregated proteins transition into various amyloid structures leading to identification of a vast number of aggregation promoting molecules and processes over the years. Inasmuch as these factors likely enhance the formation of toxic, misfolded species, they might act as risk factors in disease. Cellular membranes, and particularly certain lipids, are considered to be among the major players for aggregation of α-synuclein and IAPP, and membranes might also be the target of toxicity. Past studies have utilized an array of biophysical tools, both in vitro and in vivo, to expound the membrane-mediated aggregation. Here, we focus on membrane interaction of α-synuclein and IAPP, and how various kinds of membranes catalyze or modulate the aggregation of these proteins and how, in turn, these proteins disrupt membrane integrity, both in vitro and in vivo. The membrane interaction and subsequent aggregation has been briefly contrasted to aggregation of α-synuclein and IAPP in solution. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Anoop Rawat
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
48
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
49
|
Terakawa MS, Lee YH, Kinoshita M, Lin Y, Sugiki T, Fukui N, Ikenoue T, Kawata Y, Goto Y. Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:757-766. [PMID: 29273335 DOI: 10.1016/j.bbamem.2017.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/01/2022]
Abstract
Amyloid fibrillation causes serious neurodegenerative diseases and amyloidosis; however, the detailed mechanisms by which the structural states of precursor proteins in a lipid membrane-associated environment contribute to amyloidogenesis still remains to be elucidated. We examined the relationship between structural states of intrinsically-disordered wild-type and mutant α-synuclein (αSN) and amyloidogenesis on two-types of model membranes. Highly-unstructured wild-type αSN (αSNWT) and a C-terminally-truncated mutant lacking negative charges (αSN103) formed amyloid fibrils on both types of membranes, the model membrane mimicking presynaptic vesicles (Mimic membrane) and the model membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC membrane). Unstructured αSNWT and αSN103 both bound to Mimic membranes in a helical conformation with similar binding affinity. Promotion and then inhibition of amyloidogenesis of αSNWT were observed as the concentration of Mimic lipids increased. We explain this by the two-state binding model: at lower lipid concentrations, binding of αSNWT to membranes enhances amyloidogenicity by increasing the local concentration of membrane-bound αSN and so promoting amyloid nucleation; at higher lipid concentrations, membrane-bound αSNWT is actually in a sense diluted by increasing the number of model membranes, which blocks amyloid fibrillation due to an insufficient bound population for productive nucleation. Meanwhile, αSN103 formed amyloid fibrils over the whole concentration of Mimic lipids used here without inhibition, revealing the importance of helical structures for binding affinity and negatively charged unstructured C-terminal region for modulating amyloidogenesis. We propose that membrane binding-induced initial conformations of αSN, its overall charge states, and the population of membrane-bound αSN are key determinants of amyloidogenesis on membranes.
Collapse
Affiliation(s)
- Mayu S Terakawa
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Misaki Kinoshita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Yuxi Lin
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Naoya Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tatsuya Ikenoue
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Izumi Y, Kondo N, Takahashi R, Akaike A, Kume T. Reduction of Immunoreactivity Against the C-Terminal Region of the Intracellular α-Synuclein by Exogenous α-Synuclein Aggregates: Possibility of Conformational Changes. JOURNAL OF PARKINSONS DISEASE 2017; 6:569-79. [PMID: 27314756 DOI: 10.3233/jpd-160835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The formation of intracellular aggregates containing α-synuclein (α-syn) is a main pathological feature of Parkinson disease. The propagation of α-syn aggregation via cell-to-cell transmission has been implicated in the progression of Parkinson disease. OBJECTIVE Our aim is to clarify the molecular mechanisms underlying the formation of intracellular aggregation by extracellular α-syn. METHODS We investigated the effects of exogenous α-syn aggregates on intracellular α-syn immunoreactivity in α-syn-overexpressing SH-SY5Y cells using two antibodies to distinct epitopes of α-syn. To obtain α-syn aggregates, α-syn solution was aged with continuous agitation. RESULTS Immunoreactivity against the acidic C-terminal domain of the intracellular α-syn was reduced by exposure to agedα-syn, whereas that against the hydrophobic non-amyloid component region was not changed. The reduction in immunoreactivity was not suppressed by protease inhibitors but was mimicked by neutralization of the negative charges on the C-terminal of the intracellular α-syn induced by spermine or extracellular acidification. CONCLUSIONS These results suggest that the reduction in immunoreactivity is attributed not to proteolytic cleavage but to a conformational change at the C-terminus of the intracellular α-syn. The conformational change at the C-terminus of the intracellular α-syn might be involved in an initial step of fibril formation by exogenous α-syn aggregates.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naoto Kondo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.,Department of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|