1
|
El-Qashty R, Youssef J, Hany E. The role of erythropoietin-loaded hydrogel versus adipose derived stem cell secretome in the regeneration of tongue defects. BMC Oral Health 2024; 24:1109. [PMID: 39294639 PMCID: PMC11411902 DOI: 10.1186/s12903-024-04835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Tongue defects have several etiologies and significantly affect the quality of life. This study was conducted to compare the regenerative potential of erythropoietin (EPO)-loaded hydrogel and adipose derived stem cell (ADSC) secretome on tongue dorsum defects focusing on the role of anti-inflammatory M2 macrophage phenotype. METHODS Rats were subjected to induction of mechanical circular defects on the dorsal surface of the tongue, then divided into three groups; Group I (control): received 0.1 ml phosphate buffered saline, Group II (EPO): received 5000 U/kg EPO-hydrogel, and Group III (ADSC-Secretome): received 0.1 ml ADSC-Secretome. Treatments were injected circumferentially around wound margins after induction. Seven and fourteen days after treatment, specimens were obtained and processed for histological and immunohistochemical staining followed by the relevant histomorphometric and statistical analyses. RESULTS Seven days after treatment, groups II and III presented defects with some epithelial regeneration at the lateral margins, while the center of the defect showed granulation tissue with much inflammatory cells. The base of the defects showed some muscle fibers and new blood vessels, however group III showed more enhanced neovascularization. Fourteen days after therapeutic intervention, group II defects were completely covered with epithelium showing a thin keratin layer with regular rete pegs interdigitating with the underlying connective tissue papillae, but tongue papillae were not restored. Group III expressed much better healing with developing filiform papillae. The connective tissue showed more vascularity and well-arranged muscle bundles. Both treated groups showed a significant decrease in defect depth and significant increase in anti-inflammatory macrophages compared to the control group at both time intervals, however there was no significant difference between the two treated groups. CONCLUSION Both treatments showed promising and comparable results in the treatment of tongue defects reducing inflammation and restoring tongue histological architecture with significant upregulation of M2 macrophage.
Collapse
Affiliation(s)
- Rana El-Qashty
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Jilan Youssef
- Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Oral Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Liu G, Liang J, Li W, Jiang S, Song M, Xu S, Du Q, Wang L, Wang X, Liu X, Tang L, Yang Z, Zhou M, Meng H, Zhang L, Yang Y, Zhang B. The protective effect of erythropoietin and its novel derived peptides in peripheral nerve injury. Int Immunopharmacol 2024; 138:112452. [PMID: 38943972 DOI: 10.1016/j.intimp.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
3
|
Omidian H, Chowdhury SD, Cubeddu LX. Hydrogels for Neural Regeneration: Exploring New Horizons. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3472. [PMID: 39063768 PMCID: PMC11278084 DOI: 10.3390/ma17143472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Nerve injury can significantly impair motor, sensory, and autonomic functions. Understanding nerve degeneration, particularly Wallerian degeneration, and the mechanisms of nerve regeneration is crucial for developing effective treatments. This manuscript reviews the use of advanced hydrogels that have been researched to enhance nerve regeneration. Hydrogels, due to their biocompatibility, tunable properties, and ability to create a supportive microenvironment, are being explored for their effectiveness in nerve repair. Various types of hydrogels, such as chitosan-, alginate-, collagen-, hyaluronic acid-, and peptide-based hydrogels, are discussed for their roles in promoting axonal growth, functional recovery, and myelination. Advanced formulations incorporating growth factors, bioactive molecules, and stem cells show significant promise in overcoming the limitations of traditional therapies. Despite these advancements, challenges in achieving robust and reliable nerve regeneration remain, necessitating ongoing research to optimize hydrogel-based interventions for neural regeneration.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (L.X.C.)
| | | | | |
Collapse
|
4
|
Shen Y, Fan J, Liu S, Tao L, Yang Q, Shen X. Exploring pathogenesis and biomarkers through establishment of a rat model of male infertility with liver depression and kidney deficiency. PLoS One 2024; 19:e0303189. [PMID: 38768165 PMCID: PMC11104592 DOI: 10.1371/journal.pone.0303189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.
Collapse
Affiliation(s)
- Ying Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The National Engineering Research Center of Miao’s Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Yunyan District, Guiyang, Guizhou, China
| | - Jian Fan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Shaobo Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Qingbo Yang
- The National Engineering Research Center of Miao’s Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Yunyan District, Guiyang, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Wang W, Liu Y, Zhu ZB, Pang K, Wang JK, Gu J, Li ZB, Wang J, Shi ZD, Han CH. Research Advances in Stem Cell Therapy for Erectile Dysfunction. BioDrugs 2024; 38:353-367. [PMID: 38520608 PMCID: PMC11055746 DOI: 10.1007/s40259-024-00650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/25/2024]
Abstract
Erectile dysfunction (ED) is a common clinical condition that mainly affects men aged over 40 years. Various causes contribute to the progression of ED, including pelvic nerve injury, diabetes, metabolic syndrome, age, Peyronie's disease, smoking, and psychological disorders. Current treatments for ED are limited to symptom relief and do not address the root cause. Stem cells, with their powerful ability to proliferate and differentiate, are a promising approach for the treatment of male ED and are gradually gaining widespread attention. Current uses for treating ED have been studied primarily in experimental animals, with most studies observing improvements in erectile quality as well as improvements in erectile tissue. However, research on stem cell therapy for human ED is still limited. This article summarizes the recent literature on basic stem cell research on ED, including cavernous nerve injury, aging, diabetes, and sclerosing penile disease, and describes mechanisms of action and therapeutic effects of various stem cell therapies in experimental animals. Stem cells are also believed to interact with host tissue in a paracrine manner, and improved function can be supported through both implantation and paracrine factors. To date, stem cells have shown some preliminary promising results in animal and human models of ED.
Collapse
Affiliation(s)
- Wei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Zuo-Bin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Jing-Kai Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen-Bei Li
- Department of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Jian Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.
| | - Cong-Hui Han
- School of Medicine, Southeast University, Nanjing, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
6
|
Vasileva R, Chaprazov T, Milanova A. Effects of Erythropoietin-Promoted Fracture Healing on Bone Turnover Markers in Cats. J Funct Biomater 2024; 15:106. [PMID: 38667563 PMCID: PMC11051391 DOI: 10.3390/jfb15040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In orthopaedics, erythropoietin (EPO) is applied in the preoperative management of anaemic patients, but also as a stimulating factor to assist bone regeneration due to its angiogenic and osteoinductive potential. Since orthopaedists mainly rely on their clinical experience to assess bone healing, additional and more objective methods such as studying the dynamics of bone markers are needed. Therefore, the aim of this study was to investigate the plasma activity of bone-specific alkaline phosphatase (BALP), the N-terminal propeptide of type I collagen (PINP), the C-terminal telopeptide of type I collagen (CTX), and deoxypyridinoline (DPD) during the first 2 months of healing of comminuted fractures in cats, either non-stimulated or locally stimulated with recombinant human erythropoietin (rhEPO). The study included twelve cats of mixed breeds, aged 7.2 ± 4 months, weighing 2.11 ± 1.1 kg, with comminuted diaphyseal fractures of the femur. Surgical treatment with plate osteosynthesis was performed in all animals. The cats were randomly divided into two groups-a control (n = 6) and an EPO group (n = 6). The locally applied EPO leads to the increased activity of bone formation markers (BALP and PINP) during the second week after the osteosynthesis, preceding the peaks in the control group by two weeks. The studied bone resorption markers (DPD, CTX) varied insignificantly during the studied period. In conclusion, erythropoietin could serve as a promoter of bone healing in comminuted fractures in cats.
Collapse
Affiliation(s)
- Radina Vasileva
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Tsvetan Chaprazov
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
7
|
Gu Z, Qiu C, Chen L, Wang X. Injectable thermosensitive hydrogel loading erythropoietin and FK506 alleviates gingival inflammation and promotes periodontal tissue regeneration. Front Bioeng Biotechnol 2024; 11:1323554. [PMID: 38239915 PMCID: PMC10794575 DOI: 10.3389/fbioe.2023.1323554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Periodontitis is a chronic multifactorial inflammatory disease associated with dysbiotic plaque biofilms and characterized by progressive destruction of the tooth-supporting apparatus. Therefore, there is significant potential in the discovery of drugs that inhibit periodontal inflammatory responses and promote periodontal regeneration. Methods: In this study, we generated a periodontitis rat model to detect the effects of chitosan/β-sodium glycerophosphate (β-GP)/glycolic acid (GA) hydrogel carried Erythropoietin and FK506 (EPO-FK506-CS/β-GP/GA). A total of forty-eight male Wistar rats were used to establish the periodontitis model. Drug injection was administered every 3 days for a total of five times over a 2-week period. After a period of 2 weeks following implantation, the rats underwent anesthesia, and a section of their maxillae encompassing the maxillary first and second molars, along with the alveolar bone, was obtained. micro-CT scanning, histopathology, immunohistochemistry and reverse transcription-quantitative PCR (RT-qPCR) assays were performed. Meanwhile, ELISA assay was performed to detect the levels of inflammatory mediators (TNF-α, IL-6 and IL-1β). Results: The synthesis and characterization of EPO-FK506-CS/β-GP/GA revealed that the hydrogel has stability and sustained release of drugs. The application of FK506+EPO was found to significantly enhance new bone formation in the defect area, as evidenced by the results of HE staining. Additionally, the use of FK506+EPO in the treated groups led to a notable increase in the density of alveolar bone, as observed through micro-CT analysis, when compared to the Model group. EPO-FK506-CS/β-GP/GA hydrogel exhibited notable efficacy in modulating inflammatory mediators (TNF-α, IL-6 and IL-1β). Furthermore, the osteoinductive properties of the EPO-FK506-CS/β-GP/GA hydrogel were extensive, as evidenced by a significant upregulation in the expression of key markers (Collagen I, Runx2, OPN, and OCN) associated with osteoblastic differentiation. Conclusion: Taken together, EPO-FK506-CS/β-GP/GA hydrogel alleviates gingival inflammation and promotes periodontal tissue regeneration in the periodontitis.
Collapse
Affiliation(s)
- Zhongyi Gu
- Department of Periodontology, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Caiqing Qiu
- Department of Periodontology, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Ling Chen
- Department of Yantai University Branch, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoli Wang
- Department of Yantai University Branch, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
8
|
Argiolas A, Argiolas FM, Argiolas G, Melis MR. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci 2023; 13:802. [PMID: 37239274 PMCID: PMC10216368 DOI: 10.3390/brainsci13050802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is the inability to get and maintain an adequate penile erection for satisfactory sexual intercourse. Due to its negative impacts on men's life quality and increase during aging (40% of men between 40 and 70 years), ED has always attracted researchers of different disciplines, from urology, andrology and neuropharmacology to regenerative medicine, and vascular and prosthesis implant surgery. Locally and/or centrally acting drugs are used to treat ED, e.g., phosphodiesterase 5 inhibitors (first in the list) given orally, and phentolamine, prostaglandin E1 and papaverine injected intracavernously. Preclinical data also show that dopamine D4 receptor agonists, oxytocin and α-MSH analogues may have a role in ED treatment. However, since pro-erectile drugs are given on demand and are not always efficacious, new strategies are being tested for long lasting cures of ED. These include regenerative therapies, e.g., stem cells, plasma-enriched platelets and extracorporeal shock wave treatments to cure damaged erectile tissues. Although fascinating, these therapies are laborious, expensive and not easily reproducible. This leaves old vacuum erection devices and penile prostheses as the only way to get an artificial erection and sexual intercourse with intractable ED, with penile prosthesis used only by accurately selected patients.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Francesco Mario Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Giacomo Argiolas
- General Medicine Unit, Hospital San Michele, ARNAS“G. Brotzu”, Piazzale Ricchi 1, 09100 Cagliari, Italy;
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| |
Collapse
|
9
|
Zou H, Zhang X, Chen W, Tao Y, Li B, Liu H, Wang R, Zhao J. Vascular endothelium is the basic way for stem cells to treat erectile dysfunction: a bibliometric study. Cell Death Discov 2023; 9:143. [PMID: 37127677 PMCID: PMC10151332 DOI: 10.1038/s41420-023-01443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Vascular endothelial is considered to be a key factor in the pathogenesis of erectile dysfunction (ED). The purpose is to reveal the research trend of the field of ED and vascular endothelium. In addition, the goal is to discover the role and mechanism of vascular endothelium in ED. Bibliometrics and visualization methods based on CiteSpace were selected. We conducted the co-authorship analysis of countries, institutions and authors, co-occurrence analysis of keywords, and co-citation analysis of literature and authors through CiteSpace 6.1.R3. 1431 articles from Web of Science Core Collection (WOSCC) were included in the analysis from 1991 to 2022. We found some influential and cutting-edge nodes in each map, including countries, institutions, authors, articles, etc. Stem cell, therapy, oxidative stress, cavernous nerve injury, radical prostatectomy, fibrosis, erectile function, mesenchymal stem cell, and apoptosis may be hot keywords. In conclusion, the efficacy and mechanisms of stem cells and their derivatives in the treatment of diabetes (DM) ED and cavernous nerve injury (CNI) ED are the future research trends. Stem cells therapy for ED is a hot spot in this field, which side notes that stem cells may work mainly through improving endothelial function. Vascular endothelial cells and VEGF may repair nerve and cavernous smooth muscle directly or indirectly, and finally polish up erectile function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Tao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bolin Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ruikun Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Ren Y, Yuan J, Xue Y, Zhang Y, Li S, Liu C, Liu Y. Advanced hydrogels: New expectation for the repair of organic erectile dysfunction. Mater Today Bio 2023; 19:100588. [PMID: 36896414 PMCID: PMC9988670 DOI: 10.1016/j.mtbio.2023.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Organic erectile dysfunction (ED) is a type of sexual disorder in men that is usually associated with illness, surgical injury, normal aging and has a high incidence across the globe. And the essence of penile erection is a neurovascular event regulated by a combination of factors. Nerve and vascular injury are the main causes of erectile dysfunction. Currently, the main treatment options for ED include phosphodiesterase type 5 inhibitors (PDE5Is), intracorporeal injections and vacuum erection devices (VEDs), which are ineffective. Therefore, it is essential to find an emerging, non-invasive and effective treatment for ED. The histopathological damage causing ED can be improved or even reversed with hydrogels, in contrast to current therapies. Hydrogels have many advantages, they can be synthesized from various raw materials with different properties, possess a definite composition, and have good biocompatibility and biodegradability. These advantages make hydrogels an effective drug carrier. In this review, we began with an overview of the underlying mechanisms of organic erectile dysfunction, discussed the dilemmas of existing treatments for ED, and described the unique advantages of hydrogel over other approaches. Then emphasizing the progress of research on hydrogels in the treatment of ED.
Collapse
Affiliation(s)
- Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Jing Yuan
- First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
11
|
Overexpression of PRDX2 in Adipose-Derived Mesenchymal Stem Cells Enhances the Therapeutic Effect in a Neurogenic Erectile Dysfunction Rat Model by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4952857. [PMID: 36819780 PMCID: PMC9931470 DOI: 10.1155/2023/4952857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Neurogenic erectile dysfunction (NED) is a common and serious complication after pelvic surgery. The clinical translation of adipose-derived mesenchymal stem cell (ADSC) therapies in NED remains a major challenge due to their low survival rate and limited therapeutic effect. Peroxiredoxin 2 (PRDX2) is a member of the peroxidase family that exerts its therapeutic effects by inhibiting oxidative stress (OS) and ferroptosis, and PRDX2 is expected to enhance the therapeutic effect of ADSCs in treating NED. The purpose of this study was to investigate whether PRDX2 could improve the survival of ADSCs and determine whether overexpression of PRDX2 in ADSCs (PRDX2-ADSCs) could enhance the therapeutic effect of NED. This study investigated the potential role of PRDX2-ADSCs through a NED model induced by bilateral cavernous nerve injury (BCNI) and three in vitro models established by H2O2-stimulated ADSCs, H2O2-stimulated corpus cavernosum smooth muscle cells (CCSMCs), and RSL3-stimulated CCSMCs. We found that PRDX2 could significantly improve the viability of ADSCs by suppressing apoptosis and OS in H2O2-stimulated ADSCs. We also found that BCNI triggered ferroptosis of the corpus cavernosum, which was manifested by increased reactive oxygen species (ROS), total iron content, and MDA as well as decreased SOD and GSH. Our results further demonstrated changes in the expression of key proteins (GPX4 and ACSL4) in the ferroptosis pathway, whereas PRDX2-ADSCs ameliorated BCNI-induced erectile dysfunction and ferroptosis of the corpus cavernosum in NED rats. Consistently, PRDX2-ADSCs attenuated OS in H2O2-stimulated CCSMCs and inhibited ferroptosis in RSL3-stimulated CCSMCs, as evidenced by the decrease in ROS, total iron content, and MDA and the increase in SOD and GSH together with changes in ferroptosis-related protein (GPX4 and ACSL4) expression. In conclusion, overexpression of PRDX2 in ADSCs enhanced the therapeutic effect in a rat model of neurogenic erectile dysfunction by inhibiting ferroptosis via regulation of the GPX4/ACSL4 axis.
Collapse
|
12
|
Chen Z, Zhai J, Ma J, Chen P, Lin W, Zhang W, Xiong J, Zhang C, Wei H. Melatonin-Primed Mesenchymal Stem Cells-Derived Small Extracellular Vesicles Alleviated Neurogenic Erectile Dysfunction by Reversing Phenotypic Modulation. Adv Healthc Mater 2023; 12:e2203087. [PMID: 36652551 DOI: 10.1002/adhm.202203087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Erectile dysfunction (ED) is an adverse side effect of pelvic surgery with no effective treatment. In this study, it is explored whether melatonin could improve the therapeutic effects of small extracellular vesicles (sEVs), derived from mesenchymal stem cells (MSCs), on cavernous nerve injury (CNI) ED, and the underlying mechanisms are investigated. The sEVs from melatonin-pretreated MSCs (MT-EVs) and MSCs (NC-EVs) are isolated and applied to CNI ED. Transplantation of MT-EVs remarkably increases erectile function and reduces phenotypic modulation in CNI ED rats. The therapeutic effects of MT-EVs are superior to those of NC-EVs. Sequencing implies that miR-10a-3p is enriched in MT-EVs, and directly targets the protein kinase inhibitor α (PKIA). After the suppression of miR-10a-3p, the therapeutic actions of MT-EVs are abolished, but are rescued by PKIA. Similarly, RhoA/ROCK is inhibited by MT-EVs, but this action is reversed by suppressing miR-10a-3p, accompanied by corresponding changes in PKIA. In conclusion, transplantation of MT-EVs could significantly alleviate CNI ED. MT-EVs may relieve the phenotypic modulation of the corpora cavernosum smooth muscle cells via the miR-10a-3p/PKIA/RhoA/ROCK signaling axis. These nanovesicles should be potential therapeutic vectors or bioactive materials for CNI ED.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiancheng Zhai
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiahui Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Weishun Lin
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Weipeng Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiaming Xiong
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Chaowei Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| |
Collapse
|