1
|
Xu C, Cui X, Che J, Shen X, Chen D. Efficacy and safety of fluorescence navigation combined with 3D imaging in precise liver resection: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2025; 51:104446. [PMID: 39706235 DOI: 10.1016/j.pdpdt.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness and safety of fluorescence navigation combined with three-dimensional imaging (FN&3DI) technology in precise liver resection. METHODS A systematic search was conducted in the PubMed, Web of Science, Embase, and Cochrane Library databases for all English-language publications on fluorescence-guided navigation combined with three-dimensional (3D) imaging technology-assisted precise liver resection, with a cutoff date of July 2024. After assessing the quality of the included studies and extracting relevant data, a meta-analysis was performed using Stata 12.0 software. RESULTS A total of 6 studies involving 451 patients were included in this study, with 207 patients in the FN&3DI group and 244 patients in the conventional surgery (CS) group. The meta-analysis results showed that the FN&3DI group exhibited significantly lower values than the CS group in terms of intraoperative blood loss [mean difference (MD) = -97.90, 95 % confidence intervals (CI) = -151.15 to -44.66, P = 0.000], intraoperative blood transfusion rates [odds ratios (OR) = 2.96, 95 % CI = 1.71-5.10, P = 0.000], hospital stay (MD = -0.91, 95 % CI = -1.78 to -0.04, P = 0.041), and overall postoperative complications (OR = 1.68, 95 % CI = 1.11 to 2.53, P = 0.014). However, the FN&3DI group exhibited significantly longer surgery time (MD = 57.36, 95 % CI = 13.31-101.40, P = 0.011), but no statistically significant difference was noted in conversion rate, R0 resection margins, and postoperative recurrence between the two groups. CONCLUSION Fluorescence navigation combined with 3D imaging technology is safe and feasible for guiding precise liver resection.
Collapse
Affiliation(s)
- Chunwei Xu
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Xinhua Cui
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Jiafei Che
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Xiaojing Shen
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Dingchao Chen
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China.
| |
Collapse
|
2
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Hu M, Chen Z, Xu D, Zhang Y, Song G, Huang H, Huang J. Efficacy and safety of indocyanine green fluorescence navigation versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: a systematic review and meta-analysis. Surg Endosc 2025:10.1007/s00464-024-11518-y. [PMID: 39806179 DOI: 10.1007/s00464-024-11518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Indocyanine green (ICG) fluorescence imaging technology is increasingly widely used in laparoscopic hepatectomy. However, previous studies have produced conflicting results regarding whether it is truly superior to traditional laparoscopic hepatectomy. This study investigated the clinical effect of laparoscopic hepatectomy for hepatocellular carcinoma (HCC) using ICG imaging technology. METHODS A systematic review and meta-analysis, based on the preferred reporting items for systematic reviews and meta-analysis statement, were conducted (PROSPERO: CRD42024532356). A computer search was conducted in databases including CNKI, Wanfang, PubMed, Embase, Cochrane Library, and Web of Science from January 1, 1990, to April 30, 2024. RESULTS A total of 17 articles were included after screening, comprising 4 randomized controlled trials and 13 case-control studies, with 1620 patients in total. Among these, there were 743 cases in the fluorescence laparoscopy group and 877 cases in the non-fluorescence laparoscopy group. Hepatectomy guided by indocyanine green fluorescence navigation significantly reduced operation time (MD = - 23.25, 95% CI: - 36.35 to - 10.15, P = 0.0005), intraoperative blood loss (MD = - 51.04, 95% CI: - 69.52 to - 32.56, P < 0.00001), and intraoperative transfusion rate (OR = 0.43, 95% CI: 0.27 to 0.69, P = 0.0004), while increasing the R0 resection rate (OR = 2.93, 95% CI: 1.73 to 4.96, P < 0.0001) and decreasing the postoperative complication rate (OR = 0.59, 95% CI: 0.43 to 0.82, P = 0.002). However, there was no statistically significant difference in postoperative length of hospital stay (MD = - 0.67, 95% CI: - 1.51 to 0.18, P = 0.12). CONCLUSION In the treatment of HCC, hepatectomy guided by indocyanine green fluorescence navigation demonstrates superior efficacy and safety, its application and promotion are warranted.
Collapse
Affiliation(s)
- Manqin Hu
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
- , Kunming, China
| | - Zhangbin Chen
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Dingwei Xu
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yan Zhang
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Guangna Song
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Haoyang Huang
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jie Huang
- Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
4
|
He P, Tang H, Zheng Y, Xu X, Peng X, Jiang T, Xiong Y, Zhang Y, Zhang Y, Liu G. Optical molecular imaging technology and its application in precise surgical navigation of liver cancer. Theranostics 2025; 15:1017-1034. [PMID: 39776802 PMCID: PMC11700863 DOI: 10.7150/thno.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology. It also examines commonly used targeting mechanisms of optical probes, focusing especially on indocyanine green-the FDA-approved optical dye widely used in clinical settings-and its specific applications in diagnosing and treating liver cancer. Finally, this review highlights the advantages, limitations, and future challenges facing optical molecular imaging technology, offering a comprehensive overview of recent advances, clinical applications, and potential impacts on liver cancer treatment strategies.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Haitian Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Xiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Tao Jiang
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yongfu Xiong
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Yu Zhang
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| |
Collapse
|
5
|
Liu H, Liang X, Peng Y, Liu G, Cheng H. Supercritical Fluids: An Innovative Strategy for Drug Development. Bioengineering (Basel) 2024; 11:788. [PMID: 39199746 PMCID: PMC11351119 DOI: 10.3390/bioengineering11080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Nanotechnology plays a pivotal role in the biomedical field, especially in the synthesis and regulation of drug particle size. Reducing drug particles to the micron or nanometer scale can enhance bioavailability. Supercritical fluid technology, as a green drug development strategy, is expected to resolve the challenges of thermal degradation, uneven particle size, and organic solvent residue faced by traditional methods such as milling and crystallization. This paper provides an insight into the application of super-stable homogeneous intermix formulating technology (SHIFT) and super-table pure-nanomedicine formulation technology (SPFT) developed based on supercritical fluids for drug dispersion and micronization. These technologies significantly enhance the solubility and permeability of hydrophobic drugs by controlling the particle size and morphology, and the modified drugs show excellent therapeutic efficacy in the treatment of hepatocellular carcinoma, pathological scarring, and corneal neovascularization, and their performance and efficacy are highlighted when administered through multiple routes of administration. Overall, supercritical fluids have opened a green and efficient pathway for clinical drug development, which is expected to reduce side effects and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Xiaoliu Liang
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Hongwei Cheng
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| |
Collapse
|
6
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
7
|
Yang Z, Zhang Y, Tang L, Yang X, Song L, Shen C, Zvyagin AV, Li Y, Yang B, Lin Q. "All in one" nanoprobe Au-TTF-1 for target FL/CT bioimaging, machine learning technology and imaging-guided photothermal therapy against lung adenocarcinoma. J Nanobiotechnology 2024; 22:22. [PMID: 38184620 PMCID: PMC10770976 DOI: 10.1186/s12951-023-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
The accurate preoperative diagnosis and tracking of lung adenocarcinoma is hindered by non-targeting and diffusion of dyes used for marking tumors. Hence, there is an urgent need to develop a practical nanoprobe for tracing lung adenocarcinoma precisely even treating them noninvasively. Herein, Gold nanoclusters (AuNCs) conjugate with thyroid transcription factor-1 (TTF-1) antibody, then multifunctional nanoprobe Au-TTF-1 is designed and synthesized, which underscores the paramount importance of advancing the machine learning diagnosis and bioimaging-guided treatment of lung adenocarcinoma. Bright fluorescence (FL) and strong CT signal of Au-TTF-1 set the stage for tracking. Furthermore, the high specificity of TTF-1 antibody facilitates selective targeting of lung adenocarcinoma cells as compared to common lung epithelial cells, so machine learning software Lung adenocarcinoma auxiliary detection system was designed, which combined with Au-TTF-1 to assist the intelligent recognition of lung adenocarcinoma jointly. Besides, Au-TTF-1 not only contributes to intuitive and targeted visualization, but also guides the following noninvasive photothermal treatment. The boundaries of tumor are light up by Au-TTF-1 for navigation, it penetrates into tumor and implements noninvasive photothermal treatment, resulting in ablating tumors in vivo locally. Above all, Au-TTF-1 serves as a key platform for target bio-imaging navigation, machine learning diagnosis and synergistic PTT as a single nanoprobe, which demonstrates attractive performance on lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yujia Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Tang
- Department of Breast, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Xiao Yang
- College of Computer Science and Technology Jilin University, Changchun, 130012, China
| | - Lei Song
- Department of Breast, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chun Shen
- College of Computer Science and Technology Jilin University, Changchun, 130012, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Pan Q, Li K, Kang X, Li K, Cheng Z, Wang Y, Xu Y, Li L, Li N, Wu G, Yang S, Qi S, Chen G, Tan X, Zhan Y, Tang L, Zhan W, Yang Q. Rational design of NIR-II molecule-engineered nanoplatform for preoperative downstaging and imaging-guided surgery of orthotopic hepatic tumor. J Nanobiotechnology 2023; 21:489. [PMID: 38111035 PMCID: PMC10726515 DOI: 10.1186/s12951-023-02263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Orthotopic advanced hepatic tumor resection without precise location and preoperative downstaging may cause clinical postoperative recurrence and metastasis. Early accurate monitoring and tumor size reduction based on the multifunctional diagnostic-therapeutic integration platform could improve real-time imaging-guided resection efficacy. Here, a Near-Infrared II/Photoacoustic Imaging/Magnetic Resonance Imaging (NIR-II/PAI/MRI) organic nanoplatform IRFEP-FA-DOTA-Gd (IFDG) is developed for integrated diagnosis and treatment of orthotopic hepatic tumor. The IFDG is designed rationally based on the core "S-D-A-D-S" NIR-II probe IRFEP modified with folic acid (FA) for active tumor targeting and Gd-DOTA agent for MR imaging. The IFDG exhibits several advantages, including efficient tumor tissue accumulation, good tumor margin imaging effect, and excellent photothermal conversion effect. Therefore, the IFDG could realize accurate long-term monitoring and photothermal therapy non-invasively of the hepatic tumor to reduce its size. Next, the complete resection of the hepatic tumor in situ lesions could be realized by the intraoperative real-time NIR-II imaging guidance. Notably, the preoperative downstaging strategy is confirmed to lower the postoperative recurrence rate of the liver cancer patients under middle and advanced stage effectively with fewer side effects. Overall, the designed nanoplatform demonstrates great potential as a diagnostic-therapeutic integration platform for precise imaging-guided surgical navigation of orthotopic hepatic tumors with a low recurrence rate after surgery, providing a paradigm for diagnosing and treating the advanced tumors in the future clinical translation application.
Collapse
Affiliation(s)
- Qi Pan
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China
- Medical Imaging Department, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xueqin Kang
- School of Life Science and Technology, Engineering Research Center of Molecular & Neuro Imaging of the Ministry of Education, Xidian University, Xi'an, 710126, China
| | - Kaixuan Li
- Medical Imaging Department, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Zihe Cheng
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yafei Wang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuye Xu
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Lei Li
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710054, China
| | - Na Li
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China
| | - Guilong Wu
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China
| | - Sha Yang
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaofeng Tan
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China.
| | - Yonghua Zhan
- School of Life Science and Technology, Engineering Research Center of Molecular & Neuro Imaging of the Ministry of Education, Xidian University, Xi'an, 710126, China.
| | - Li Tang
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China.
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Qinglai Yang
- Center for Molecular lmaging Probe, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research lnstitute, University of South China, Hengyang, 421001, China.
- Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Kalantari L, Ghotbabadi ZR, Gholipour A, Ehymayed HM, Najafiyan B, Amirlou P, Yasamineh S, Gholizadeh O, Emtiazi N. A state-of-the-art review on the NRF2 in Hepatitis virus-associated liver cancer. Cell Commun Signal 2023; 21:318. [PMID: 37946175 PMCID: PMC10633941 DOI: 10.1186/s12964-023-01351-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.
Collapse
Affiliation(s)
- Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Arsalan Gholipour
- Nanotechnology Research Institute, School of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | | - Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Peng Y, Cheng H, Liu H, Zhang Y, Liu G. Super‐stable homogeneous embolic agents advance the treatment of hepatocellular carcinoma. IRADIOLOGY 2023; 1:190-194. [DOI: 10.1002/ird3.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Yisheng Peng
- State Key Laboratory of Vaccines for Infectious Diseases Xiang an Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases Xiang an Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Biology School of Life Sciences Xiamen University Xiamen China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Amoy Hopeful Biotechnology Co., Ltd. Xiamen China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases Xiang an Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases Xiang an Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases Xiang an Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Biology School of Life Sciences Xiamen University Xiamen China
| |
Collapse
|
11
|
Shi X, Xu D, Cheng H, Chu C, Liu G. Recent Advances in Interventional Fluorescence Imaging: Toward the Precise Visualization of Transarterial Mini-Invasive Delivery Systems. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:251-263. [DOI: 10.1021/accountsmr.2c00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|