1
|
Oprea M, Pandele AM, Nechifor AC, Nicoara AI, Antoniac IV, Semenescu A, Voicu SI, Enachescu CI, Fratila AM. Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes. Polymers (Basel) 2025; 17:209. [PMID: 39861281 PMCID: PMC11768280 DOI: 10.3390/polym17020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method. The biomineralization ability of the membranes was tested through the Taguchi method, and it was found that nanostructured hydroxyapatite was formed at the surface of the composite membrane (with a higher organization degree and purity, and a Ca/P percentage closer to the one seen with stoichiometric hydroxyapatite, compared to the one deposited on neat cellulose acetate). The results obtained indicate a potential new application for magnetic nanoparticles in the field of orthopedics.
Collapse
Affiliation(s)
- Madalina Oprea
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania; (M.O.); (A.M.P.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Andreea Madalina Pandele
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania; (M.O.); (A.M.P.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Adrian Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Iulian Vasile Antoniac
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.V.A.); (A.S.)
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.V.A.); (A.S.)
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Stefan Ioan Voicu
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania; (M.O.); (A.M.P.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Catalin Ionel Enachescu
- Department of Dermatology, Elias Emergency University Hospital, 17 Bulevardul Marasti, 011461 Bucharest, Romania;
| | - Anca Maria Fratila
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
2
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
You J, Zhang Q, Qian L, Shi Z, Wang X, Jia L, Xia Y. Antibacterial periodontal ligament stem cells enhance periodontal regeneration and regulate the oral microbiome. Stem Cell Res Ther 2024; 15:334. [PMID: 39334342 PMCID: PMC11437971 DOI: 10.1186/s13287-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The transplantation of periodontal ligament stem cells (PDLSCs) has been shown to enhance periodontal regeneration in animal models and clinical trials. However, it is not known whether PDLSCs are antibacterial and whether this affects oral microbiota and periodontal regeneration. METHODS We isolated human PDLSCs from periodontal ligament of extracted teeth. Rats' periodontal fenestration defects were prepared, and treated with PDLSC injections (Cell group), using saline injections (Saline group) as the control. The oral microbiota was explored by 16 S rDNA sequencing and compared with that before surgery (PRE group). The antibacterial property of PDLSCs and its underlying mechanism were tested in vitro. RESULTS Microbiome analyses reveal a decreased biodiversity, a changed community structure, and downregulated community functions of the oral microbiome in the Saline group. PDLSCs injections enhance periodontal regeneration, reverse the decrease in diversity, and increase the abundance of non-pathogenic bacterial Bifidobacterium sp. and Lactobacillus sp., making the oral microbiome similar to that of the PRE group. In vitro, PDLSCs inhibit the growth of Staphylococcus aureus, Escherichia coli, and Fusobacterium nucleatum. The main mechanism of action is postulated to involve production of the cationic antimicrobial peptide LL-37. CONCLUSIONS Our findings reveal that PDLSC injections enhance periodontal regeneration and regulate the oral microbiome to foster an oral cavity microenvironment conducive to symbiotic microbiota associated with health.
Collapse
Affiliation(s)
- Jiayi You
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- Suzhou Stomatological Hospital, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Linjue Qian
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zihan Shi
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xinyue Wang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Jia
- Department of Emergency General Dentistry, Hebei Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yang Xia
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Chen Z, Xiao N, Luo L, Zhang L, Yin F, Hu W, Wu Z, Chen Y, Luo K, Xu X. Nanosilicates facilitate periodontal regeneration potential by activating the PI3K-AKT signaling pathway in periodontal ligament cells. J Nanobiotechnology 2024; 22:532. [PMID: 39223550 PMCID: PMC11370094 DOI: 10.1186/s12951-024-02798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The recent development of nanobiomaterials has shed some light on the field of periodontal tissue regeneration. Laponite (LAP), an artificially synthesized two-dimensional (2D) disk-shaped nanosilicate, has garnered substantial attention in regenerative biomedical applications owing to its distinctive structure, exceptional biocompatibility and bioactivity. This study endeavors to comprehensively evaluate the influence of LAP on periodontal regeneration. The effects of LAP on periodontal ligament cells (PDLCs) on osteogenesis, cementogenesis and angiogenesis were systematically assessed, and the potential mechanism was explored through RNA sequencing. The results indicated that LAP improved osteogenic and cementogenic differentiation of PDLCs, the regulatory effects of LAP on PDLCs were closely correlated with activation of PI3K-AKT signaling pathway. Moreover, LAP enhanced angiogenesis indirectly via manipulating paracrine of PDLCs. Then, LAP was implanted into rat periodontal defect to confirm its regenerative potential. Both micro-CT and histological analysis indicated that LAP could facilitate periodontal tissue regeneration in vivo. These findings provide insights into the bioactivity and underlying mechanism of LAP on PDLCs, highlighting it might be a potential therapeutic option in periodontal therapy.
Collapse
Affiliation(s)
- Ziqin Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Nianqi Xiao
- Gannan Health Vocational College, Ganzhou, Jiangxi, 341000, P.R. China
| | - Lan Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Fan Yin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Weiqiang Hu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Zekai Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Yuling Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| |
Collapse
|
5
|
Muresan GC, Boca S, Lucaciu O, Hedesiu M. The Applicability of Nanostructured Materials in Regenerating Soft and Bone Tissue in the Oral Cavity-A Review. Biomimetics (Basel) 2024; 9:348. [PMID: 38921228 PMCID: PMC11201588 DOI: 10.3390/biomimetics9060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Two of the most exciting new technologies are biotechnology and nanotechnology. The science of nanostructures, or nanotechnology, is concerned with the development, testing, and use of structures and molecules with nanoscale dimensions ranging from 1 to 100 nm. The development of materials and tools with high specificity that interact directly at the subcellular level is what makes nanotechnology valuable in the medical sciences. At the cellular or tissue level, this might be converted into focused clinical applications with the greatest possible therapeutic benefits and the fewest possible side effects. The purpose of the present study was to review the literature and explore the applicability of the nanostructured materials in the process of the regeneration of the soft and hard tissues of the oral cavity. MATERIALS AND METHODS An electronic search of articles was conducted in several databases, such as PubMed, Embase, and Web of Science, to conduct this study, and the 183 articles that were discovered were chosen and examined, and only 22 articles met the inclusion criteria in this review. RESULTS The findings of this study demonstrate that using nanoparticles can improve the mechanical properties, biocompatibility, and osteoinductivity of biomaterials. CONCLUSIONS Most recently, breakthroughs in tissue engineering and nanotechnology have led to significant advancements in the design and production of bone graft substitutes and hold tremendous promise for the treatment of bone abnormalities. The creation of intelligent nanostructured materials is essential for various applications and therapies, as it allows for the precise and long-term delivery of medication, which yields better results.
Collapse
Affiliation(s)
- Giorgiana Corina Muresan
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania;
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaela Hedesiu
- Department of Oral Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Ansari SR, Mahajan J, Teleki A. Iron oxide nanoparticles for treatment and diagnosis of chronic inflammatory diseases: A systematic review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1963. [PMID: 38725229 DOI: 10.1002/wnan.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/15/2024]
Abstract
Chronic inflammatory conditions are among the most prevalent diseases worldwide. Several debilitating diseases such as atherosclerosis, inflammatory bowel disease, rheumatoid arthritis, and Alzheimer's are linked to chronic inflammation. These conditions often develop into complex and fatal conditions, making early detection and treatment of chronic inflammation crucial. Current diagnostic methods show high variability and do not account for disease heterogeneity and disease-specific proinflammatory markers, often delaying the disease detection until later stages. Furthermore, existing treatment strategies, including high-dose anti-inflammatory and immunosuppressive drugs, have significant side effects and an increased risk of infections. In recent years, superparamagnetic iron oxide nanoparticles (SPIONs) have shown tremendous biomedical potential. SPIONs can function as imaging modalities for magnetic resonance imaging, and as therapeutic agents due to their magnetic hyperthermia capability. Furthermore, the surface functionalization of SPIONs allows the detection of specific disease biomarkers and targeted drug delivery. This systematic review explores the utility of SPIONs against chronic inflammatory disorders, focusing on their dual role as diagnostic and therapeutic agents. We extracted studies indexed in the Web of Science database from the last 10 years (2013-2023), and applied systematic inclusion criteria. This resulted in a final selection of 38 articles, which were analyzed for nanoparticle characteristics, targeted diseases, in vivo and in vitro models used, and the efficacy of the therapeutic or diagnostic modalities. The results revealed that ultrasmall SPIONs are excellent for imaging arterial and neuronal inflammation. Furthermore, novel therapies using SPIONs loaded with chemotherapeutic drugs show promise in the treatment of inflammatory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Shaquib Rahman Ansari
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mahajan
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ming P, Liu Y, Yu P, Jiang X, Yuan L, Cai S, Rao P, Cai R, Lan X, Tao G, Xiao J. A Biomimetic Se-nHA/PC Composite Microsphere with Synergistic Immunomodulatory and Osteogenic Ability to Activate Bone Regeneration in Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305490. [PMID: 37852940 DOI: 10.1002/smll.202305490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Indexed: 10/20/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in periodontitis exacerbates the destruction of alveolar bone. Therefore, scavenging ROS to reshape the periodontal microenvironment, alleviate the inflammatory response and promote endogenous stem cell osteogenic differentiation may be an effective strategy for treating bone resorption in periodontitis. In this study, sericin-hydroxyapatite nanoparticles (Se-nHA NPs) are synthesized using a biomimetic mineralization method. Se-nHA NPs and proanthocyanidins (PC) are then encapsulated in sericin/sodium alginate (Se/SA) using an electrostatic injection technique to prepare Se-nHA/PC microspheres. Microspheres are effective in scavenging ROS, inhibiting the polarization of macrophages toward the M1 type, and inducing the polarization of macrophages toward the M2 type. In normal or macrophage-conditioned media, the Se-nHA/PC microspheres effectively promoted the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Furthermore, the Se-nHA/PC microspheres demonstrated anti-inflammatory effects in a periodontitis rat model by scavenging ROS and suppressing pro-inflammatory cytokines. The Se-nHA/PC microspheres are also distinguished by their capacity to decrease alveolar bone loss, reduce osteoclast activity, and boost osteogenic factor expression. Therefore, the biomimetic Se-nHA/PC composite microspheres have efficient ROS-scavenging, anti-inflammatory, and osteogenic abilities and can be used as a multifunctional filling material for inflammatory periodontal tissue regeneration.
Collapse
Affiliation(s)
- Piaoye Ming
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yunfei Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Peiyang Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Linlin Yuan
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Pengcheng Rao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
8
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
9
|
Liao W, Ni C, Ge R, Li Y, Jiang S, Yang W, Yan F. Nel-like Molecule Type 1 Combined with Gold Nanoparticles Modulates Macrophage Polarization, Osteoclastogenesis, and Oral Microbiota in Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8442-8458. [PMID: 38335323 DOI: 10.1021/acsami.3c17862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The disruption of host-microbe homeostasis and uncontrolled inflammatory response have been considered as vital causes for developing periodontitis, subsequently leading to an imbalance between the bone and immune system and the collapse of bone homeostasis. Consequently, strategies to modulate the immune response and bone metabolization have become a promising approach to prevent and treat periodontitis. In this study, we investigated the cooperative effects of Nel-like molecule type 1 (Nell-1) and gold nanoparticles (AuNPs) on macrophage polarization, osteoclast differentiation, and the corresponding functions in an experimental model of periodontitis in rats. Nell-1-combined AuNPs in in vitro studies were found to reduce the production of inflammatory factors (TNF-α, p < 0.0001; IL-6, p = 0.0012), modulate the ratio of M2/M1 macrophages by inducing macrophage polarization into the M2 phenotype, and inhibit cell fusion, maturation, and activity of osteoclasts. Furthermore, the local application of Nell-1-combined AuNPs in in vivo studies resulted in alleviation of damages to the periodontal and bone tissues, modulation of macrophage polarization and the activity of osteoclasts, and alteration of the periodontal microbiota, in which the relative abundance of the probiotic Bifidobacterium increased (p < 0.05). These findings reveal that Nell-1-combined AuNPs could be a promising drug candidate for the prevention and treatment of periodontitis. However, Nell-1-combined AuNPs did not show organ toxicity or impair the integrity of intestinal epithelium but alter the gut microbiota, leading to the dysbiosis of gut microbiota. The adverse impact of changes in gut microbiota needs to be further investigated. Nonetheless, this study provides a novel perspective and direction for the biological safety assessment of biomaterials in oral clinical applications.
Collapse
Affiliation(s)
- Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Ruiyang Ge
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-Level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; Shenzhen Clinical Research Center for Oral Diseases, Shenzhen 5180036, Guangdong, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| |
Collapse
|
10
|
Wang X, Sun L, Qin X, You J, Zhang J, Xia Y. Enhanced Anti-inflammatory Capacity of the Conditioned Medium Derived from Periodontal Ligament Stem Cells Modified with an Iron-Based Nanodrug. Adv Biol (Weinh) 2023; 7:e2300044. [PMID: 37409394 DOI: 10.1002/adbi.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Cell-free therapy using conditioned medium (CM) from mesenchymal stem cells takes full advantage of the bioactive factors secreted by the cells while avoiding disadvantages such as immune rejection and tumor formation due to cell transplantation. In this study, human periodontal ligament stem cells (PDLSCs) are modified with the superparamagnetic iron oxide nanoparticle (SPION)-based nanodrug ferumoxytol (PDLSC-SPION). Compared with PDLSCs, PDLSC-SPION showed good cell viability and better osteogenic differentiation ability. Cell-free CM is collected and the anti-inflammatory capacity of PDLSC CM and PDLSC-SPION CM is assessed by treatment of lipopolysaccharide-stimulated macrophages and IL-17-stimulated human gingival fibroblasts. Both CMs inhibited the expression of proinflammatory cytokines in cells, and the therapeutic effect is more distinct for PDLSC-SPION CM than PDLSC CM, which may be due to their different proteomic compositions. Therefore, modification of PDLSCs with ferumoxytol enhances the anti-inflammatory capacity of its CM, making it more potentially useful for the treatment of inflammatory diseases such as periodontitis.
Collapse
Affiliation(s)
- Xinyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Liuxu Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayi You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|