1
|
Lucas D, Munoz C, O'Boyle Q, Pires IS, Palmer AF, Cabrales P. Mitigating hemoglobin-induced nephropathy: ApoHb-hp protection of podocytes. Physiol Rep 2024; 12:e70132. [PMID: 39578364 PMCID: PMC11584305 DOI: 10.14814/phy2.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
This study investigates hemoglobin (Hb)-induced kidney injury and the protective role of the ApoHemoglobin-Haptoglobin (ApoHb-Hp) complex against heme and Hb damage. Hb facilitates oxygen (O2) delivery but poses challenges outside red blood cells (RBCs) due to toxic Hb and heme mechanisms. These are managed by binding to serum proteins like Haptoglobin (Hp) and Hemopexin (Hpx). During hemolysis, depletion of Hp and Hpx leaves tissues vulnerable to Hb and heme. To address this, we developed the ApoHb-Hp complex, based on Apohemoglobin, which is produced by removing heme from Hb, conjugated with Hp. This complex acts as a dual scavenger for Hb and heme, preventing tissue damage. Our findings demonstrate that ApoHb-Hp significantly protects MPC5 podocytes from Hb-induced damage. Fluorescent staining showed a higher percentage of nephrin-positive cells in the ApoHb-Hp group, and MTT assays revealed enhanced cell viability compared to Hb alone. Additionally, ApoHb-Hp reduced reactive oxygen species (ROS) production, with the Hb group exhibiting significantly elevated ROS levels. The ApoHb-Hp complex mitigated the depletion of protective mechanisms, as shown by significant increases in superoxide dismutase (SOD) and glutathione (GSH). Moreover, ApoHb-Hp treatment reduced the activation of the NLRP3 inflammasome signaling pathway and inflammatory cytokines IL-1β and IL-18. These findings underscore the therapeutic potential of ApoHb-Hp in mitigating Hb-induced renal damage by preserving podocyte viability and reducing oxidative stress. Overall, ApoHb-Hp maintained protective mechanisms depleted otherwise by Hb. These findings highlight ApoHb-Hp's potential as a therapeutic agent against Hb-induced renal damage, offering insights into its mechanisms and implications for treating conditions involving hemolysis.
Collapse
Affiliation(s)
- Daniela Lucas
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Carlos Munoz
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Quintin O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Pedro Cabrales
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Gu X, Palmer AF. Tangential flow filtration-facilitated purification of human red blood cell membrane fragments and its preferential use in removing unencapsulated material from resealed red blood cell ghosts compared to centrifugation. Biotechnol Prog 2024; 40:e3501. [PMID: 39076022 PMCID: PMC11659797 DOI: 10.1002/btpr.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The biodistribution of many therapeutics is controlled by the immune system. In addition, some molecules are cytotoxic when not encapsulated inside of larger cellular structures, such as hemoglobin (Hb) encapsulation inside of red blood cells (RBCs). To counter immune system recognition and cytotoxicity, drug delivery systems based on red blood cell membrane fragments (RBCMFs) have been proposed as a strategy for creating immunoprivileged therapeutics. However, the use of RBCMFs for drug delivery applications requires purification of RBCMFs at large scale from lysed RBCs free of their intracellular components. In this study, we were able to successfully use tangential flow filtration (TFF) to remove >99% of cell-free Hb from lysed RBCs at high concentrations (30%-40% v/v), producing RBCMFs that were 2.68 ± 0.17 μm in diameter. We were also able to characterize the RBCMFs more thoroughly than prior work, including measurement of particle zeta potential, along with individual TFF diacycle data on the cell-free Hb concentration in solution and time per diacycle, as well as concentration and size of the RBCMFs. In addition to purifying RBCMFs from lysed RBCs, we utilized a hypertonic solution to reseal purified RBCMFs encapsulating a model protein (Hb) to yield resealed Hb-encapsulated RBC ghosts (Hb-RBCGs). TFF was then compared against centrifugation as an alternative method for removing unencapsulated Hb from Hb-RBCGs, and the effects that each washing method on the resulting Hb-RBCG biophysical properties was assessed.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Coll-Satue C, Jansman MMT, Hosta-Rigau L. Comparative Evaluation of UV-Vis Spectroscopy-Based Approaches for Hemoglobin Quantification: Method Selection and Practical Insights. Biomolecules 2024; 14:1046. [PMID: 39334815 PMCID: PMC11430504 DOI: 10.3390/biom14091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing demand for effective alternatives to red blood cells (RBCs) has spurred significant research into hemoglobin (Hb)-based oxygen carriers (HBOCs). Accurate characterization of HBOCs-including Hb content, encapsulation efficiency, and yield-is crucial for ensuring effective oxygen delivery, economic viability, and the prevention of adverse effects caused by free Hb. However, the choice of quantification methods for HBOCs is often driven more by tradition than by a thorough assessment of available options. This study meticulously compares various UV-vis spectroscopy-based methods for Hb quantification, focusing on their efficacy in measuring Hb extracted from bovine RBCs across different concentration levels. The findings identify the sodium lauryl sulfate Hb method as the preferred choice due to its specificity, ease of use, cost-effectiveness, and safety, particularly when compared to cyanmethemoglobin-based methods. Additionally, the study discusses the suitability of these methods for HBOC characterization, emphasizing the importance of considering carrier components and potential interferences by analyzing the absorbance spectrum before selecting a method. Overall, this study provides valuable insights into the selection of accurate and reliable Hb quantification methods, which are essential for rigorous HBOC characterization and advancements in medical research.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark
| | | | - Leticia Hosta-Rigau
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Nadimifar M, Ghourchian H, Hosta-Rigau L, Moosavi-Movahedi AA. Structural and functional alterations of polydopamine-coated hemoglobin: New insights for the development of successful oxygen carriers. Int J Biol Macromol 2023; 253:127275. [PMID: 37804889 DOI: 10.1016/j.ijbiomac.2023.127275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
One of the major factors that is currently hindering the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) is the autoxidation of Hb into nonfunctional methemoglobin. Modification with polydopamine (PDA), which is a biocompatible free radical scavenger has shown the ability to protect Hb against oxidation. Due to its tremendous potential in the development of successful HBOCs, herein, we conduct a thorough evaluation of the effect of PDA on the stability, aggregation, structure and function of the underlying Hb. By UV-vis spectrometry we show that PDA can prevent Hb's aggregation while thermal denaturation studies indicate that, although PDA coating resulted in a lower midpoint transition temperature, it was also able to protect the protein from full denaturation. These results are further corroborated by differential scanning calorimetry. Circular dichroism reveals that PDA can promote changes in Hb's secondary structure while, by UV-vis spectroscopy, we show that PDA also interacts with the porphyrin complex located in Hb's hydrophobic pocket. Last but not least, affinity studies show that PDA-coated Hb has a higher capability for oxygen release. Such an effect is further enhanced at lower pH. Importantly, through molecular docking simulations we provide a plausible explanation for the observed experimental results.
Collapse
Affiliation(s)
| | | | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
5
|
Eren E, Black SM, Reader BF, Beal E, Cuddington C, Belcher DA, Palmer AF, Whitson BA. Novel Polymerized Human Serum Albumin For Ex Vivo Lung Perfusion. ASAIO J 2023; 69:716-723. [PMID: 36976617 PMCID: PMC10313759 DOI: 10.1097/mat.0000000000001918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) is a method of organ preservation to expand the donor pool by allowing organ assessment and repair. Perfusion solution composition is crucial to maintaining and improving organ function during EVLP. EVLP compared perfusates supplemented with either polymeric human serum albumin (PolyHSA) or standard human serum albumin (HSA). Rat heart-lung blocks underwent normothermic EVLP (37°C) for 120 minutes using perfusate with 4% HSA or 4% PolyHSA synthesized at a 50:1 or 60:1 molar ratio of glutaraldehyde to PolyHSA. Oxygen delivery, lung compliance, pulmonary vascular resistance (PVR), wet-to-dry ratio, and lung weight were measured. Perfusion solution type (HSA or PolyHSA) significantly impacted end-organ metrics. Oxygen delivery, lung compliance, and PVR were comparable among groups ( P > 0.05). Wet-to-dry ratio increased in the HSA group compared to the PolyHSA groups (both P < 0.05) suggesting edema formation. Wet-to-dry ratio was most favorable in the 60:1 PolyHSA-treated lungs compared to HSA ( P < 0.05). Compared to using HSA, PolyHSA significantly lessened lung edema. Our data confirm that the physical properties of perfusate plasma substitutes significantly impact oncotic pressure and the development of tissue injury and edema. Our findings demonstrate the importance of perfusion solutions and PolyHSA is an excellent candidate macromolecule to limit pulmonary edema. http://links.lww.com/ASAIO/A980.
Collapse
Affiliation(s)
- Emre Eren
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Sylvester M. Black
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Brenda F. Reader
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Eliza Beal
- Department of Surgery, The Ohio State University Wexner Medical Center
| | - Clayton Cuddington
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Andre F. Palmer
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Bryan A. Whitson
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
- The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine
| |
Collapse
|
6
|
Gu X, Allyn M, Swindle-Reilly K, Palmer AF. ZIF-8 metal organic framework nanoparticle loaded with tense quaternary state polymerized bovine hemoglobin: potential red blood cell substitute with antioxidant properties. NANOSCALE 2023; 15:8832-8844. [PMID: 37114464 DOI: 10.1039/d2nr06812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to several limitations associated with blood transfusion, such as the relatively short shelf life of stored blood, low risk of developing acute immune hemolytic reactions and graft-versus-host disease, many strategies have been developed to synthesize hemoglobin-based oxygen carriers (HBOCs) as universal red blood cell (RBC) substitutes. Recently, zeolite imidazole framework-8 (ZIF-8), a metal-organic framework, has attracted considerable attention as a protective scaffold for encapsulation of hemoglobin (Hb). Despite the exceptional thermal and chemical stability of ZIF-8, the major impediments to implementing ZIF-8 for Hb encapsulation are the structural distortions associated with loading large quantities of Hb in the scaffold as the Hb molecule has a larger hydrodynamic diameter than the pore size of ZIF-8. Therefore to reduce the structural distortion caused by Hb encapsulation, we established and optimized a continuous-injection method to synthesize nanoparticle (NP) encapsulated polymerized bovine Hb (PolybHb) using ZIF-8 precursors (ZIF-8P-PolybHb NPs). The synthesis method was further modified by adding EDTA as a chelating agent, which reduced the ZIF-8P-PolybHb NP size to <300 nm. ZIF-8P-PolybHb NPs exhibited lower oxygen affinity (36.4 ± 3.2 mm Hg) compared to unmodified bovine Hb, but was similar in magnitude to unencapsulated PolybHb. The use of the chemical cross-linker glutaraldehyde to polymerize bovine Hb resulted in the low Hill coefficient of PolybHb, indicating loss of Hb's oxygen binding cooperativity, which could be a limitation when using PolybHb as an oxygen carrier for encapsulation inside the ZIF-8 matrix. ZIF-8P-PolybHb NPs exhibited slower oxygen offloading kinetics compared to unencapsulated PolybHb, demonstrating successful encapsulation of PolybHb. ZIF-8P-PolybHb NPs also exhibited favorable antioxidant properties when exposed to H2O2. Incorporation of PolybHb into the ZIF-8 scaffold resulted in reduced cytotoxicity towards human umbilical vein endothelial cells compared to unloaded ZIF-8 NPs and ZIF-8 NPs loaded with bovine Hb. We envisage that such a monodisperse and biocompatible HBOC with low oxygen affinity and antioxidant properties may broaden its use as an RBC substitute.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Katelyn Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, 43212, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Chen N, Belcher DA, Savla C, Palmer AF, Berthiaume F. Biocompatibility of the oxygen carrier polymerized human hemoglobin towards HepG2/C3A cells. Heliyon 2023; 9:e15878. [PMID: 37215914 PMCID: PMC10192743 DOI: 10.1016/j.heliyon.2023.e15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hemoglobin (Hb) based oxygen carriers (HBOCs) are designed to minimize the toxicity of extracellular Hb, while preserving its high oxygen-carrying capacity for oxygen delivery to cells. Polymerized human Hb (PolyHb) is a novel type of nanosized HBOC synthesized via glutaraldehyde-mediated crosslinking of free Hb, and which preserves the predominant quaternary state during the crosslinking reaction (low oxygen affinity tense (T) quaternary state PolyHb is synthesized at 0% Hb oxygen saturation, and high oxygen affinity relaxed (R) quaternary state PolyHb is synthesized at 100% Hb oxygen saturation). Major potential applications for PolyHbs, and HBOCs in general, include oxygenation of bioreactor systems containing large liver cell masses, and ex-vivo perfusion preservation of explanted liver grafts. The toxicity of these compounds toward liver cells must be evaluated before testing their use in these complex systems for oxygen delivery. Herein, we characterized the effect of PolyHbs on the hepatoma cell line HepG2/C3A, used as a model hepatocyte and as a cell line used in some investigational bioartificial liver support devices. HepG2/C3A cells were incubated in cell culture media containing PolyHbs or unmodified Hb at concentrations up to 50 mg/mL and for up to 6 days. PolyHbs were well tolerated at a dose of 10 mg/mL, with no significant decrease in cell viability; however, proliferation was inhibited as much as 10-fold after 6 days of exposure at 50 mg/mL. Secretion of albumin, and urea, as well as glucose and ammonia removal were measured in presence of 10 mg/mL of PolyHbs or unmodified Hb. In addition, methoxy- and ethoxy-resorufin deacetylase (MROD and EROD) activities, which reflect cytochrome P450 metabolism, were measured. R-state PolyHb displayed improved or intact activity in 3 out of 7 functions compared to unmodified Hb. T-state PolyHb displayed improved or intact activity in 4 out of 7 functions compared to unmodified Hb. Thus, PolyHbs, both in the R-state and T-state, are safer to use at a concentration of 10 mg/mL as compared to unmodified Hb in static culture liver-related applications.
Collapse
Affiliation(s)
- Nuozhou Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Greenfield A, Lamb DR, Gu X, Thangaraju K, Setua S, Yahya A, Vahedi A, Khan MA, Wang Q, Buehler PW, Palmer AF. Biophysical Analysis and Preclinical Pharmacokinetics-Pharmacodynamics of Tangential Flow Filtration Fractionated Polymerized Human Hemoglobin as a Red Blood Cell Substitute. Biomacromolecules 2023; 24:1855-1870. [PMID: 36877888 DOI: 10.1021/acs.biomac.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 μm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.
Collapse
Affiliation(s)
- Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Derek R Lamb
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Saini Setua
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Qihong Wang
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Paul W Buehler
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Hui W, Mu W, Zhao C, Xue D, Zhong Z, Fang Y, Gao M, Li X, Gao S, Liu K, Yan K. Solid-Phase Polymerization Using Anion-Exchange Resin Can Almost Completely Crosslink Hemoglobin to Prepare Hemoglobin-Based Oxygen Carriers. Int J Nanomedicine 2023; 18:1777-1791. [PMID: 37041816 PMCID: PMC10083038 DOI: 10.2147/ijn.s403739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.
Collapse
Affiliation(s)
- Wenli Hui
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Wenhua Mu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Cong Zhao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Dan Xue
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Zihua Zhong
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Yani Fang
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Ming Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Xiao Li
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Shihao Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kaiyue Liu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kunping Yan
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
- Correspondence: Kunping Yan, Email
| |
Collapse
|
10
|
Agrawal P, Wilkstein K, Guinn E, Mason M, Serrano Martinez CI, Saylae J. A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Cuddington CT, Wolfe SR, Belcher DA, Allyn M, Greenfield A, Gu X, Hickey R, Lu S, Salvi T, Palmer AF. Pilot scale production and characterization of next generation high molecular weight and tense quaternary state polymerized human hemoglobin. Biotechnol Bioeng 2022; 119:3447-3461. [PMID: 36120842 PMCID: PMC9828582 DOI: 10.1002/bit.28233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.
Collapse
Affiliation(s)
- Clayton T. Cuddington
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Savannah R. Wolfe
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Shuwei Lu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Tanmay Salvi
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
12
|
Xie Y, Xu X, Lin J, Xu Y, Wang J, Ren Y, Wu A. Effective Separation of Cancer-Derived Exosomes in Biological Samples for Liquid Biopsy: Classic Strategies and Innovative Development. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100131. [PMID: 36176940 PMCID: PMC9463520 DOI: 10.1002/gch2.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 05/26/2023]
Abstract
Liquid biopsy has remarkably facilitated clinical diagnosis and surveillance of cancer via employing a non-invasive way to detect cancer-derived components, such as circulating tumor DNA and circulating tumor cells from biological fluid samples. The cancer-derived exosomes, which are nano-sized vesicles secreted by cancer cells have been investigated in liquid biopsy as their important roles in intracellular communication and disease development have been revealed. Given the challenges posed by the complicated humoral microenvironment, which contains a variety of different cells and macromolecular substances in addition to the exosomes, it has attracted a large amount of attention to effectively isolate exosomes from collected samples. In this review, the authors aim to analyze classic strategies for separation of cancer-derived exosomes, giving an extensive discussion of advantages and limitations of these methods. Furthermore, the innovative multi-strategy methods to realize efficient isolation of cancer-derived exosomes in practical applications are also presented. Additionally, the possible development trends of exosome separation in to the future is discussed in this review.
Collapse
Affiliation(s)
- Yujiao Xie
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Xiawei Xu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Jie Lin
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| | - Yanping Xu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| | - Jing Wang
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Key Laboratory of More Electric Aircraft Technology of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040China
| | - Yong Ren
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Aiguo Wu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| |
Collapse
|
13
|
Scalable production and complete biophysical characterization of poly(ethylene glycol) surface conjugated liposome encapsulated hemoglobin (PEG-LEH). PLoS One 2022; 17:e0269939. [PMID: 35802716 PMCID: PMC9269976 DOI: 10.1371/journal.pone.0269939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Particle encapsulated hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) have clear advantages over their acellular counterparts because of their larger molecular diameter and lack of vasoactivity upon transfusion. Poly(ethylene glycol) surface conjugated liposome encapsulated Hb (PEG-LEH) nanoparticles are considered a promising class of HBOC for use as a red blood cell (RBC) substitute. However, their widespread usage is limited by manufacturing processes which prevent material scale up. In this study, PEG-LEH nanoparticles were produced via a scalable and robust process using a high-pressure cell disruptor, and their biophysical properties were thoroughly characterized. Hb encapsulation, methemoglobin (metHb) level, O2-PEG-LEH equilibria, PEG-LEH gaseous (oxygen, carbon monoxide, nitric oxide) ligand binding/release kinetics, lipocrit, and long-term storage stability allowed us to examine their potential suitability and efficacy as an RBC replacement. Our results demonstrate that PEG-LEH nanoparticle suspensions manufactured via a high-pressure cell disruptor have Hb concentrations comparable to whole blood (~12 g/dL) and possess other desirable characteristics, which may permit their use as potential lifesaving O2 therapeutics.
Collapse
|
14
|
Savla C, Palmer AF. Lyophilized annelid mega-hemoglobin retains its' quaternary structure and oxygen equilibrium properties after room temperature storage for over 6 months. PLoS One 2022; 17:e0263996. [PMID: 35176086 PMCID: PMC8853537 DOI: 10.1371/journal.pone.0263996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
The long-term storage stability and portability of hemoglobin (Hb)-based oxygen carriers are important design criteria in the development of these therapeutics. Lyophilization or storing proteins in a freeze-dried form is known to increase storage lifetime and reduce overall weight. In this study, we lyophilized the extracellular mega-hemoglobin of the annelid Lumbricus terrestris and tested the storage stability at different temperatures and oxygenation conditions. Storage in refrigerated conditions for over 6 months in the presence of N2 reduced oxidation by 50% while storage at room temperature in the presence of N2 reduced oxidation by 60%, all while maintaining the structural stability of the mega-hemoglobin. We also demonstrated a reliable strategy to freeze dry Hbs in the presence of a minimally non-reducing disaccharide sugar that could be easily re-solubilized in deionized water. Overall, this study made significant advances towards long term storage stability of oxygen therapeutics for direct applications in transfusion medicine.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
15
|
Gu X, Hickey R, Rath A, Palmer AF. Scalable manufacturing platform for the production of methemoglobin as a non-oxygen carrying control material in studies of cell-free hemoglobin solutions. PLoS One 2022; 17:e0263782. [PMID: 35171971 PMCID: PMC8849478 DOI: 10.1371/journal.pone.0263782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Methemoglobin (metHb) arises from the oxidation of ferrous hemoglobin (HbFe2+, Hb) to ferric hemoglobin (HbFe3+, metHb), which is unable to bind gaseous ligands such as oxygen (O2) and carbon monoxide (CO), and binds to nitric oxide (NO) significantly slower compared to Hb. Therefore, metHb does not elicit vasoconstriction and systemic hypertension in vivo due to its extremely slow NO scavenging rate in comparison to cell-free Hb, but will induce oxidative tissue injury, demonstrating the potential of using metHb as a control material when studying the toxicity of cell-free Hb. Hence, the goal of this work was to develop a novel manufacturing strategy for production of metHb that is amenable to scale-up. In this study, small scale (e.g. 1 mL reaction volume) screening experiments were initially conducted to determine the optimal molar ratio of Hb to the oxidization agents hydrogen peroxide (H2O2) or sodium nitrite (NaNO2) to achieve the highest conversion of Hb into metHb. A spectral deconvolution program was employed to determine the molar fraction of various species (hemichrome, metHb, oxyHb, metHb- NO2−, and NaNO2) in solution during the oxidation reaction. From this analysis, either a 1:1 or 1:5 molar ratio was identified as optimal molar ratios of Hb:NaNO2 (heme basis) that yielded the highest conversion of Hb into metHb with negligible amounts of side products. Hence in order to reduce the reaction time, a 1:5 molar ratio was chosen for large scale (i.e. 1.5 L reaction volume) synthesis of bovine metHb (metbHb) and human metHb (methHb). The biophysical properties of metHb were then characterized to elucidate the potential of using the synthesized metHb as a non-O2 carrying control material. The haptoglobin binding kinetics of metHb were found to be similar to Hb. Additionally, the synthesized metHb was stable in phosphate buffered saline (PBS, 50 mM, pH 7.4) at 4°C for approximately one week, indicating the high stability of the material.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Antara Rath
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
16
|
Steffen A, Xiong Y, Georgieva R, Kalus U, Bäumler H. Bacterial safety study of the production process of hemoglobin-based oxygen carriers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:114-126. [PMID: 35145832 PMCID: PMC8805039 DOI: 10.3762/bjnano.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Hemoglobin microparticles (HbMP) produced with a three-step procedure, including coprecipitation of hemoglobin with manganese carbonate, protein cross-linking, and dissolution of the carbonate template were shown to be suitable for application as artificial oxygen carriers. First preclinical safety investigations delivered promising results. Bacterial safety plays a decisive role during the production of HbMP. Therefore, the bioburden and endotoxin content of the starting materials (especially hemoglobin) and the final particle suspension are intensively tested. However, some bacteria may not be detected by standard tests due to low concentration. The aim of this study was to investigate how these bacteria would behave in the fabrication process. Biocidal effects are known for glutaraldehyde and for ethylenediaminetetraacetic acid, chemicals that are used in the fabrication process of HbMP. It was shown that both chemicals prevent bacterial growth at the concentrations used during HbMP fabrication. In addition, the particle production was carried out with hemoglobin solutions spiked with Escherichia coli or Staphylococcus epidermidis. No living bacteria could be detected in the final particle suspensions. Therefore, we conclude that the HbMP fabrication procedure is safe in respect of bacterial contamination.
Collapse
Affiliation(s)
- Axel Steffen
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
17
|
Cuddington CT, Wolfe SR, Palmer AF. Biophysical properties of tense quaternary state polymerized human hemoglobins bracketed between 500 kDa and 0.2 μm in size. Biotechnol Prog 2022; 38:e3219. [PMID: 34626100 PMCID: PMC8854340 DOI: 10.1002/btpr.3219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Polymerized hemoglobin (Hb)-based oxygen carriers (HBOCs) are a scalable and cost-effective red blood cell (RBC) substitute. However, previous generations of commercial polymerized HBOCs elicited oxidative tissue injury in vivo due to the presence of low molecular weight polymeric Hb species (<500 kDa) and cell-free Hb (64 kDa). Polymerized human Hb (PolyhHb) locked in the tense quaternary state (T-state) exhibits great promise to meet clinical needs where past polymerized HBOCs failed. This work shows that separation of T-state PolyhHb via a two-stage tangential flow filtration (TFF) purification train such that the Hb polymers are bracketed between 500 kDa and 0.2 μm creates a uniform polymer size and largely eliminates the Hb species which elicit deleterious side effects in vivo. Biophysical characterization of these materials demonstrates their potential effectiveness as an RBC substitute and verifies the low percentage of low molecular weight Hb polymers and cell-free Hb. Size exclusion chromatography confirms that T-state PolyhHb can be consistently produced in a size range between 500 kDa and 0.2 μm. Furthermore, the average molecular weight of all PolyhHb species produced is one or two orders of magnitude larger than that of the commercial polymerized HBOCs Hemolink and Oxyglobin, respectively. Haptoglobin binding kinetics confirms that two-stage TFF processing of PolyhHb reliably removes cell-free Hb and low molecular weight polymeric Hb species. T-state PolyhHbs demonstrate lower auto-oxidation rates compared to unmodified Hb and prior generations of commercial polymerized HBOCs. These results demonstrate T-state PolyhHb's feasibility as a next-generation polymerized HBOC for potential use in transfusion medicine.
Collapse
Affiliation(s)
- Clayton T. Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| | - Savannah R. Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| |
Collapse
|
18
|
Gu X, Savla C, Palmer AF. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties. Biotechnol Bioeng 2022; 119:176-186. [PMID: 34672363 PMCID: PMC8643326 DOI: 10.1002/bit.27962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
19
|
Savla C, Palmer AF. Structural Stability and Biophysical Properties of the Mega-Protein Erythrocruorin Are Regulated by Polyethylene Glycol Surface Coverage. Biomacromolecules 2021; 22:2081-2093. [PMID: 33821616 DOI: 10.1021/acs.biomac.1c00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide variety of hemoglobin-based oxygen carriers (HBOCs) have been designed for use as red blood cell (RBC) substitutes in transfusion medicine, ex vivo organ perfusion, oxygen delivery to hypoxic tissues, and a myriad of other applications. However, hemoglobin (Hb) derived from annelids (erythrocruorins [Ecs]) comprise a natural class of HBOC, since they are larger in size (30 nm in diameter) and contain more heme groups per molecule (144 heme groups) compared to human Hb (hHb; 5 nm in diameter and 4 heme groups). The larger size of Ec compared to hHb reduces tissue extravasation from the vascular space, thus, reducing vasoconstriction, systemic hypertension, and tissue oxidative injury when used as an RBC substitute. In addition, prior research has shown that Ecs possess slower auto-oxidation rates than hHb at physiological temperature, thus, making them attractive candidates for use as RBC substitutes. Unfortunately, it was also observed that Ecs have a much lower circulatory half-life in vivo compared to other HBOCs. Hence, conjugating polyethylene glycol (PEG) to the surface of Ec was proposed as a simple strategy to increase Ec circulatory half-life. Therefore, in order to inform future in vivo studies with PEGylated Ec, we decided to investigate the structural stability and biophysical properties of variable PEG surface coverage on Ec compared to native Ec. We observed an increase in PEG-Ec diameter and molecular weight (MW) and changes to the quaternary structure, secondary structure, and surface hydrophobicity after PEGylation. There was also an increase in oxygen binding affinity, reduction in oxygen offloading rate, and increase in auto-oxidation rate for increasing PEGylation ratios. Weak dissociation of Ec was also observed after dense PEGylation caused by steric repulsion of the conjugated PEG chains. Hence, we determined an optimum Ec PEGylation ratio that resulted in a substantial size and MW increase along with preservation of oxygen binding properties. In future studies, these materials will be tested in animal models to evaluate pharmacodynamics, pharmacokinetics, tissue oxygenation, microcirculatory responses, and overall safety.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Pires IS, Palmer AF. Selective protein purification via tangential flow filtration – Exploiting protein-protein complexes to enable size-based separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Hickey R, Palmer AF. Synthesis of Hemoglobin-Based Oxygen Carrier Nanoparticles By Desolvation Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14166-14172. [PMID: 33205655 DOI: 10.1021/acs.langmuir.0c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) present an alternative to red blood cells (RBCs) when blood is not available. However, the most widely used synthesis techniques have fundamental flaws, which may have contributed toward disappointing clinical application. Polymerized Hb contains a heterogeneous distribution of particle size and shape, while Hb encapsulation inside liposomes results in high lipid burden and low Hb content. Meanwhile, there are a variety of other nanoparticle synthetic techniques which, having found success as drug delivery vehicles, may be well suited to function as an HBOC. We synthesized desolvated Hb nanoparticles (Hb-dNPs) with diameters of approximately 250 nm by the controlled precipitation of Hb with ethanol. Oxidized dextran was found to be an effective surface stabilizing agent that maintained particle integrity. In vitro biophysical characterization showed a high-affinity oxygen delivery profile (P50 = 7.72 mm Hg), suggesting a potential for therapeutic use and opening a new avenue for HBOC research.
Collapse
Affiliation(s)
- Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Lucas A, Belcher DA, Munoz C, Williams AT, Palmer AF, Cabrales P. Polymerized human hemoglobin increases the effectiveness of cisplatin-based chemotherapy in non-small cell lung cancer. Oncotarget 2020; 11:3770-3781. [PMID: 33144918 PMCID: PMC7584239 DOI: 10.18632/oncotarget.27776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cisplatin is a promising therapeutic for the treatment of non-small cell lung cancer (NSCLC). Unfortunately, a significant portion of NSCLC patients relapse due to cisplatin chemoresistance. This chemoresistance is thought to be primarily associated with hypoxia in the tumor microenvironment. Administration of hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) is a promising strategy to alleviate hypoxia in the tumor, which may make cisplatin more effective. In this study, we administered a high O2 affinity, relaxed state (R-state) polymerized hemoglobin (PolyHb) to three different NSCLC cell lines cultured in vitro and implanted in vivo into healthy mice. The R-state PolyHb administered in this study is unable to deliver O2 unless under severe hypoxia which significantly limits its oxygenation potential. In vitro sensitivity studies indicate that the administration of PolyHb increases the effectiveness of cisplatin under hypoxic conditions. Additional animal studies revealed that co-administration of PolyHb with cisplatin attenuated tumor growth without alleviating hypoxia. Analysis of reactive O2 species production in the presence of hypoxic culture indicates that exogenous ROS production by oxidized PolyHb may the mechanism of chemosensitization. This ROS mechanism, coupled with oxygenation, may be a potential chemosensitizing strategy for use in NSCLC treatment.
Collapse
Affiliation(s)
- Alfredo Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexander T. Williams
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Savla C, Munoz C, Hickey R, Belicak M, Gilbert C, Cabrales P, Palmer AF. Purification of Lumbricus terrestris Mega-Hemoglobin for Diverse Oxygen Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4957-4968. [PMID: 33313397 DOI: 10.1021/acsbiomaterials.0c01146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygen therapeutics are being developed for a variety of applications in transfusion medicine. In order to reduce the side-effects (vasoconstriction, systemic hypertension, and oxidative tissue injury) associated with previous generations of oxygen therapeutics, new strategies are focused on increasing the molecular diameter of hemoglobin obtained from mammalian sources via polymerization and encapsulation. Another approach towards oxygen therapeutic design has centered on using naturally occurring large molecular diameter hemoglobins (i.e. erythrocruorins) derived from annelid sources. Therefore, the goal of this study was to purify erythrocruorin from the terrestrial worm Lumbricus terrestris for diverse oxygen therapeutic applications. Tangential flow filtration (TFF) was used as a scalable protein purification platform to obtain a >99% pure LtEc product, which was confirmed by size exclusion high performance liquid chromatography and SDS-PAGE analysis. In vitro characterization concluded that the ultra-pure LtEc product had oxygen equilibrium properties similar to human red blood cells, and a lower rate of auto-oxidation compared to human hemoglobin, both of which should enable efficient oxygen transport under physiological conditions. In vivo evaluation concluded that the ultra-pure product had positive effects on the microcirculation sustaining functional capillary density compared to a less pure product (~86% purity). In summary, we purified an LtEc product with favorable biophysical properties that performed well in an animal model using a reliable and scalable purification platform to eliminate undesirable proteins.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Maria Belicak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Gilbert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Pires IS, O’Boyle QT, Munoz CJ, Savla C, Cabrales P, Palmer AF. Enhanced Photodynamic Therapy Using the Apohemoglobin-Haptoglobin Complex as a Carrier of Aluminum Phthalocyanine. ACS APPLIED BIO MATERIALS 2020; 3:4495-4506. [DOI: 10.1021/acsabm.0c00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quintin T. O’Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carlos J. Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Polymerized human hemoglobin facilitated modulation of tumor oxygenation is dependent on tumor oxygenation status and oxygen affinity of the hemoglobin-based oxygen carrier. Sci Rep 2020; 10:11372. [PMID: 32647211 PMCID: PMC7347553 DOI: 10.1038/s41598-020-68190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Administration of hemoglobin-based oxygen carriers (HBOCs) into the systemic circulation is a potential strategy to relieve solid tumor hypoxia in order to increase the effectiveness of chemotherapeutics. Previous computational analysis indicated that the oxygen (O2) status of the tumor and HBOC O2 affinity may play a role in increased O2 delivery to the tumor. However, no study has experimentally investigated how low- and high-affinity HBOCs would perform in normoxic and hypoxic tumors. In this study, we examined how the HBOC, polymerized human hemoglobin (PolyhHb), in the relaxed (R) or tense (T) quaternary state modulates O2 delivery to hypoxic (FME) and normoxic (LOX) human melanoma xenografts in a murine window chamber model. We examined microcirculatory fluid flow via video shearing optical microscopy, and O2 distributions via phosphorescence quenching microscopy. Additionally, we examined how weekly infusion of a 20% top-load dose of PolyhHb influences growth rate, vascularization, and regional blood flow in the FME and LOX tumor xenografts. Infusion of low-affinity T-state PolyhHb led to increased tissue oxygenation, decreased blood flow, decreased tumor growth, and decreased vascularization in hypoxic tumors. However, infusion of both T-state and R-state PolyhHbs led to worse outcomes in normoxic tumors. Of particular concern was the high-affinity R-state PolyhHb, which led to no improvement in hypoxic tumors and significantly worsened outcomes in normoxic tumors. Taken together, the results of this study indicate that the tumor O2 status is a primary determinant of the potency and outcomes of infused PolyhHb.
Collapse
|
26
|
Belcher DA, Munoz C, Pires IS, Williams AT, Cabrales P, Palmer AF. Apohemoglobin-haptoglobin complexes attenuate the hypertensive response to low-molecular-weight polymerized hemoglobin. Blood Adv 2020; 4:2739-2750. [PMID: 32559292 PMCID: PMC7322967 DOI: 10.1182/bloodadvances.2020002045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Polymerized hemoglobin (PolyHb) is a promising hemoglobin (Hb)-based oxygen carrier currently undergoing development as a red blood cell substitute. Unfortunately, commercially developed products are composed of low-molecular-weight (LMW) PolyHb molecules, which extravasate, scavenge nitric oxide, and result in vasoconstriction and hypertension. The naturally occurring Hb-scavenging species haptoglobin (Hp), combined with the purified heme-scavenging species apohemoglobin (apoHb), is a potential candidate to alleviate the pressor effect of PolyHb. This study evaluated the protective activity of administering the apoHb-Hp complex to mitigate the vasoactive response induced by the transfusion of LMW PolyHb. Hp binding to PolyHb was characterized in vitro. The effectiveness of apoHb-Hp administration on reducing the vasoconstriction and pressor effects of PolyHb was assessed by measuring systemic and microcirculatory hemodynamics. Transfusion of LMW PolyHb to vehicle control pretreated animals increased mean arterial pressure while decreasing arteriole diameter and functional capillary density. However, transfusion of LMW PolyHb to apoHb-Hp pretreated animals prevented changes in mean arterial pressure, heart rate, arteriole diameter, blood flow, and functional capillary density relative to before transfusion. These results indicate that the increased size of PolyHb after binding to the apoHb-Hp complex may help compartmentalize PolyHb in the vascular space and thus reduce extravasation, nitric oxide scavenging, and toxicity responsible for vasoconstriction and systemic hypertension.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | - Carlos Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | | | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| |
Collapse
|
27
|
Gu X, Bolden-Rush C, Cuddington CT, Belcher DA, Savla C, Pires IS, Palmer AF. Comprehensive characterization of tense and relaxed quaternary state glutaraldehyde polymerized bovine hemoglobin as a function of cross-link density. Biotechnol Bioeng 2020; 117:2362-2376. [PMID: 32472694 DOI: 10.1002/bit.27382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/08/2022]
Abstract
Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Crystal Bolden-Rush
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies. Cell Mol Bioeng 2020; 13:435-446. [PMID: 33184576 DOI: 10.1007/s12195-020-00621-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background Tissue ischemia contributes to necrosis and infection. While angiogenic cell therapies have emerged as a promising strategy against ischemia, current approaches to cell therapies face multiple hurdles. Recent advances in nuclear reprogramming could potentially overcome some of these limitations. However, under severely ischemic conditions necrosis could outpace reprogramming-based repair. As such, adjunctive measures are required to maintain a minimum level of tissue viability/activity for optimal response to restorative interventions. Methods Here we explored the combined use of polymerized hemoglobin (PolyHb)-based oxygen nanocarriers with Tissue Nano-Transfection (TNT)-driven restoration to develop tissue preservation/repair strategies that could potentially be used as a first line of care. Random-pattern cutaneous flaps were created in a mouse model of ischemic injury. PolyHbs with high and low oxygen affinity were synthesized and injected into the tissue flap at various timepoints of ischemic injury. The degree of tissue preservation was evaluated in terms of perfusion, oxygenation, and resulting necrosis. TNT was then used to deploy reprogramming-based vasculogenic cell therapies to the flaps via nanochannels. Reprogramming/repair outcomes were evaluated in terms of vascularity and necrosis. Results Flaps treated with PolyHbs exhibited a gradual decrease in necrosis as a function of time-to-intervention, with low oxygen affinity PolyHb showing the best outcomes. TNT-based intervention of the flap in combination with PolyHb successfully curtailed advanced necrosis compared to flaps treated with only PolyHb or TNT alone. Conclusions These results indicate that PolyHb and TNT technologies could potentially be synergistically deployed and used as early intervention measures to combat severe tissue ischemia.
Collapse
|
29
|
Munoz CJ, Pires IS, Baek JH, Buehler PW, Palmer AF, Cabrales P. Apohemoglobin-haptoglobin complex attenuates the pathobiology of circulating acellular hemoglobin and heme. Am J Physiol Heart Circ Physiol 2020; 318:H1296-H1307. [PMID: 32302494 DOI: 10.1152/ajpheart.00136.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Haptoglobin (Hp) is the plasma protein that binds and clears cell-free hemoglobin (Hb), whereas apohemoglobin (apoHb, i.e., Hb devoid of heme) can bind heme. Therefore, the apoHb-Hp protein complex should facilitate holoHb-apoHb αβ-dimer exchange and apoHb-heme intercalation. Thus, we hypothesized that apoHb-Hp could facilitate both Hb and heme clearance, which, if not alleviated, could have severe microcirculatory consequences. In this study, we characterized apoHb-Hp and Hb/heme ligand interactions and assessed their in vivo consequences. Hb exchange and heme binding with the apoHb-Hp complex was studied with transfer assays using size-exclusion high-performance liquid chromatography coupled with UV-visible spectrophotometry. Exchange/transfer experiments were conducted in guinea pigs dosed with Hb or heme-albumin followed by a challenge with equimolar amounts of apoHb-Hp. Finally, systemic and microcirculatory parameters were studied in hamsters instrumented with a dorsal window chamber via intravital microscopy. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. Dosing with the apoHb-Hp complex reversed Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, reduced microvascular blood flow, and diminished functional capillary density. Therefore, this study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure.NEW & NOTEWORTHY This study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. The apoHb-Hp complex reverses Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, preserves microvascular blood flow, and functional capillary density. In summary, the unique properties of the apoHb-Hp complex prevent adverse systemic and microvascular responses to Hb and heme-albumin exposure and introduce a novel therapeutic approach to facilitate simultaneous removal of extracellular Hb and heme.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Office of Blood Research and Review, Laboratory of Biochemistry and Vascular Biology, Food and Drug Administration, Silver Spring, Maryland
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
30
|
Pires IS, Savla C, Palmer AF. Poly(ethylene glycol) Surface-Conjugated Apohemoglobin as a Synthetic Heme Scavenger. Biomacromolecules 2020; 21:2155-2164. [DOI: 10.1021/acs.biomac.0c00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Stančić AZ, Drvenica IT, Obradović HN, Bugarski BM, Ilić VL, Bugarski DS. Native bovine hemoglobin reduces differentiation capacity of mesenchymal stromal cells in vitro. Int J Biol Macromol 2020; 144:909-920. [PMID: 31669467 DOI: 10.1016/j.ijbiomac.2019.09.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
We have tested in vitro effects of hemoglobin from bovine slaughterhouse blood (BHb) on stromal cells of mesodermal origin, with an aim to explore its use as a component of cell culture media. Human peripheral blood mesenchymal stromal cells (PB-MSCs) and three mouse cell lines (ATDC5, MC3T3-E1 and 3T3-L1) were employed to study BHb effects on their growth and migration. The cells multilineage differentiation capacity in the presence of BHb was evaluated after induced differentiation, by histochemical staining and by RT-PCR analysis of the expression of genes specific for chondrogenic, adipogenic and osteogenic lineages. The effects of BHb on the cell proliferation and motility were dependent on both, cell type and BHb concentration (0.1 μM, 1 μM and 10 μM). In the lowest concentration (0.1 µM) BHb showed the least prominent effect on the cell proliferation and migration. In this concentration BHb reduced the differentiation capacity of all tested cells and its effect was dependent of composition of induction medium and the culture period. Obtained data suggest that BHb has the potential to be used as a component of cell culture media through maintaining proliferation and reducing differentiation capacity of mesenchymal stromal cells.
Collapse
Affiliation(s)
- Ana Z Stančić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana T Drvenica
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina N Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Branko M Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | - Vesna Lj Ilić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
| | - Diana S Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Cuddington C, Moses S, Belcher D, Ramesh N, Palmer A. Next-generation polymerized human hemoglobins in hepatic bioreactor simulations. Biotechnol Prog 2020; 36:e2958. [PMID: 31922354 PMCID: PMC9286418 DOI: 10.1002/btpr.2958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 01/01/2023]
Abstract
Hepatic hollow fiber (HF) bioreactors can be used to provide temporary support to patients experiencing liver failure. Before being connected to the patient's circulation, cells in the bioreactor must be exposed to a range of physiological O2 concentrations as observed in the liver sinusoid to ensure proper performance. This zonation in cellular oxygenation promotes differences in hepatocyte phenotype and may better approximate the performance of a real liver within the bioreactor. Polymerized human hemoglobin (PolyhHb) locked in the tense quaternary state (T-state) has the potential to both supply and regulate O2 transport to cultured hepatocytes in the bioreactor due to its low O2 affinity. In this study, T-state PolyhHb production and purification processes were optimized to minimize the concentration of low-molecular-weight PolyhHb species in solution. Deconvolution of size-exclusion chromatography spectra was performed to calculate the distribution of polymeric Hb species in the final product. Fluid flow and mass transport within a single fiber of a hepatic HF bioreactor was computationally modeled with finite element methods to simulate the effects of employing T-state PolyhHb to facilitate O2 transport in a hepatic bioreactor system. Optimal bioreactor performance was defined as having a combined hypoxic and hyperoxic volume fraction in the extracapillary space of less than 0.05 where multiple zones were observed. The Damköhler number and Sherwood number had strong inverse relationships at each cell density and fiber thickness combination. These results suggest that targeting a specific Damköhler number may be beneficial for optimal hepatic HF bioreactor operation.
Collapse
Affiliation(s)
- Clayton Cuddington
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Savannah Moses
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Donald Belcher
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Niral Ramesh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Andre Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Belcher DA, Cuddington CT, Martindale EL, Pires IS, Palmer AF. Controlled Polymerization and Ultrafiltration Increase the Consistency of Polymerized Hemoglobin for Use as an Oxygen Carrier. Bioconjug Chem 2020; 31:605-621. [PMID: 31868349 DOI: 10.1021/acs.bioconjchem.9b00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymerized human hemoglobins (PolyhHbs) are a promising class of red blood cell substitute for use in transfusion medicine. Unfortunately, the application of the commonly used glutaraldehyde cross-linking chemistry to synthesize these materials results in a complex mixture of PolyhHb molecules with highly varied batch-to-batch consistency. We implemented a controlled method of gas exchange and reagent addition that results in a homogeneous PolyhHb product. A fully coupled tangential flow filtration system was used to purify and concentrate the synthesized PolyhHb molecules. This improved method of PolyhHb production could be used to more precisely control the size and reduce the polydispersity of PolyhHb molecules, with minimal effects on the resulting oxygen-carrying capability. In addition to these factors, we assessed how the hemoglobin scavenging protein haptoglobin (Hp) would interact with PolyhHb molecules of varying sizes and quarternary states. Our results indicated that T-state PolyhHbs may be more efficiently detoxified by Hp compared with R-state PolyhHb and unmodified Hb.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Evan L Martindale
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Pires IS, Belcher DA, Hickey R, Miller C, Badu‐Tawiah AK, Baek JH, Buehler PW, Palmer AF. Novel manufacturing method for producing apohemoglobin and its biophysical properties. Biotechnol Bioeng 2019; 117:125-145. [DOI: 10.1002/bit.27193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/08/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus Ohio
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus Ohio
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus Ohio
| | - Colbert Miller
- Department of Chemistry and BiochemistryThe Ohio State University Columbus Ohio
| | | | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and ResearchFood and Drug Administration Silver Spring Maryland
| | - Paul W. Buehler
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and ResearchFood and Drug Administration Silver Spring Maryland
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus Ohio
| |
Collapse
|
35
|
Kloypan C, Prapan A, Suwannasom N, Chaiwaree S, Kaewprayoon W, Steffen A, Xiong Y, Baisaeng N, Georgieva R, Bäumler H. Improved oxygen storage capacity of haemoglobin submicron particles by one-pot formulation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S964-S972. [DOI: 10.1080/21691401.2018.1521819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiraphat Kloypan
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Ausanai Prapan
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiological Technology, Naresuan University, Phitsanulok, Thailand
| | - Nittiya Suwannasom
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Division of Biochemistry and Nutrition, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Saranya Chaiwaree
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmaceutical Technology, Payap University, Chiang Mai, Thailand
| | - Waraporn Kaewprayoon
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmaceutical Technology, Payap University, Chiang Mai, Thailand
| | - Axel Steffen
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nuttakorn Baisaeng
- Division of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Trakia University, Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Belcher DA, Banerjee U, Baehr CM, Richardson KE, Cabrales P, Berthiaume F, Palmer AF. Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation. PLoS One 2017; 12:e0185988. [PMID: 29020036 PMCID: PMC5636107 DOI: 10.1371/journal.pone.0185988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/23/2017] [Indexed: 01/20/2023] Open
Abstract
Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues.
Collapse
Affiliation(s)
- Donald Andrew Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Uddyalok Banerjee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher Michael Baehr
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristopher Emil Richardson
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Andre Francis Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
37
|
Pires IS, Belcher DA, Palmer AF. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation. Biochemistry 2017; 56:5245-5259. [PMID: 28846391 DOI: 10.1021/acs.biochem.7b00683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apohemoglobin (apoHb) is produced by removing heme from hemoglobin (Hb). However, preparations of apoHb may contain damaged globins, which render total protein assays inaccurate for active apoHb quantification. Fortunately, apoHb heme-binding sites react with heme via the proximal histidine-F8 (His-F8) residue, which can be monitored spectrophotometrically. The bond between the His-F8 residue of apoHb and heme is vital for maintenance of fully functional and cooperative Hb. Additionally, most apoHb drug delivery applications facilitate hydrophobic drug incorporation inside the apoHb hydrophobic heme-binding pocket in which the His-F8 residue resides. This makes the His-F8 residue a proper target for apoHb activity quantification. In this work, dicyanohemin (DCNh), a stable monomeric porphyrin species, was used as a probe molecule to quantify active apoHb through monocyanohemin-His-F8 bond formation. ApoHb activity was quantified via the analysis of the 420 nm equilibrium absorbance of DCNh and apoHb mixtures. His-F8 saturation was determined by the presence of an inflection point from a plot of the 420 nm absorbance of a fixed concentration of apoHb against an increasing DCNh concentration. Various concentrations of a stock apoHb solution were tested to demonstrate the precision of the assay. The accuracy of the assay was assessed via spectral deconvolution, confirming His-F8 saturation at the inflection point. The effect of the heme-binding protein bovine serum albumin and precipitated apoHb on assay sensitivity was not significant. An analysis of the biophysical properties of reconstituted Hb confirmed heme-binding pocket activity. Taken together, this assay provides a simple and reliable method for determination of apoHb activity.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
Fontes JA, Banerjee U, Iazbik MC, Marín LM, Couto CG, Palmer AF. Effect of ascorbic acid on storage of Greyhound erythrocytes. Am J Vet Res 2015; 76:789-800. [PMID: 26309107 DOI: 10.2460/ajvr.76.9.789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess changes in biochemical and biophysical properties of canine RBCs during cold (1° to 6°C) storage in a licensed RBC additive solution (the RBC preservation solution designated AS-1) supplemented with ascorbic acid. SAMPLE Blood samples from 7 neutered male Greyhounds; all dogs had negative results when tested for dog erythrocyte antigen 1.1. PROCEDURES Blood was collected into citrate-phosphate-dextrose and stored in AS-1. Stored RBCs were supplemented with 7.1mM ascorbic acid or with saline (0.9% NaCl) solution (control samples). Several biochemical and biophysical properties of RBCs were measured, including percentage hemolysis, oxygen-hemoglobin equilibrium, and the kinetic rate constants for O2 dissociation, carbon monoxide association, and nitric oxide dioxygenation. RESULTS Greyhound RBCs stored in AS-1 supplemented with ascorbic acid did not have significantly decreased hemolysis, compared with results for the control samples, during the storage period. CONCLUSIONS AND CLINICAL RELEVANCE In this study, ascorbic acid did not reduce hemolysis during storage. Several changes in stored canine RBCs were identified as part of the hypothermic storage lesion.
Collapse
|
39
|
Development of a capillary zone electrophoresis method for rapid determination of human globin chains in α and β-thalassemia subjects. Blood Cells Mol Dis 2015; 55:62-7. [PMID: 25976469 DOI: 10.1016/j.bcmd.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
Thalassemia is an inherited autosomal recessive blood disorder characterized by the underproduction of globin chains as a consequence of globin gene defects, resulting in malfunctioning red blood cells and oxygen transport. Analysis of globin chains is an important aspect of thalassemia research. In this study we developed a capillary zone electrophoresis (CZE) method for human globin determination in the diagnosis of thalassemia and hemoglobin variants. To demonstrate the utility of this approach, α/β area ratios were determined for samples from 310 thalassemia patients and healthy controls. The separation was performed on uncoated capillary with simple preparation. Distinct globin peaks were resolved in 17 min, and coefficients of variation (CV) for migration time and areas ranged from 0.37%-1.69% and 0.46%-6.71%, respectively. Receiver operating characteristic (ROC) curve analysis of the α/β area ratios gave 100% sensitivity and specificity for indicating β-TI/TM, and 100% sensitivity and 97.4% specificity for Hb H disease. Hemoglobin G-Honolulu (Hb G-Honolulu) and Hb Westmead (Hb WS) were successfully detected using this CZE method. This automated methodology is simple, rapid and cost-effective for the fast determination of human globin chains, which could be an important diagnostic tool in the field of hemoglobinopathies.
Collapse
|
40
|
Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 2015; 16:5028-46. [PMID: 25751721 PMCID: PMC4394463 DOI: 10.3390/ijms16035028] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage (SAH), and may be responsible for important complications of SAH. Signaling by Toll-like receptor 4 (TLR4)-mediated nuclear factor κB (NFκB) in microglia plays a critical role in neuronal damage after SAH. Three molecules derived from erythrocyte breakdown have been postulated to be endogenous TLR4 ligands: methemoglobin (metHgb), heme and hemin. However, poor water solubility of heme and hemin, and lipopolysaccharide (LPS) contamination have confounded our understanding of these molecules as endogenous TLR4 ligands. We used a 5-step process to obtain highly purified LPS-free metHgb, as confirmed by Fourier Transform Ion Cyclotron Resonance mass spectrometry and by the Limulus amebocyte lysate assay. Using this preparation, we show that metHgb is a TLR4 ligand at physiologically relevant concentrations. metHgb caused time- and dose-dependent secretion of the proinflammatory cytokine, tumor necrosis factor α (TNFα), from microglial and macrophage cell lines, with secretion inhibited by siRNA directed against TLR4, by the TLR4-specific inhibitors, Rs-LPS and TAK-242, and by anti-CD14 antibodies. Injection of purified LPS-free metHgb into the rat subarachnoid space induced microglial activation and TNFα upregulation. Together, our findings support the hypothesis that, following SAH, metHgb in the subarachnoid space can promote widespread TLR4-mediated neuroinflammation.
Collapse
|
41
|
Boretti FS, Baek JH, Palmer AF, Schaer DJ, Buehler PW. Modeling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species-pharmacokinetic and therapeutic implications. Front Physiol 2014; 5:385. [PMID: 25346694 PMCID: PMC4191077 DOI: 10.3389/fphys.2014.00385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/18/2014] [Indexed: 11/13/2022] Open
Abstract
Background: Haptoglobin (Hp) prevents hemoglobin (Hb) extravasation and attenuates Hb induced tissue oxidation and vasoconstriction. Small animal models such as mouse, rat and guinea pig appear to demonstrate proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from humans in the clearance of Hb:Hp and demonstrate long persistence of circulating Hb:Hp complexes. Objective: The focus of this study is to understand Hb:Hp clearance in a non-rodent species. In contrast to rodents, dogs maintain high plasma Hp concentrations comparable to humans and demonstrate more rapid clearance of Hb:Hp when compared to rodent species, therefore dogs may represent a relevant species to evaluate Hb:Hp pharmacokinetics and cellular clearance. Results: In this study we show, that like human macrophages, dog peripheral blood monocyte derived macrophages express a glucocorticoid inducible endocytic clearance pathways with a high specificity for the Hb:Hp complex. Evaluating the Beagle dog as a non-rodent model species we provide the first pharmacokinetic parameter estimates of free Hb and Hb:Hp complexes. The data demonstrate a significantly reduced volume of distribution (Vc) for Hb:Hp compared to free Hb, increased maximum plasma concentrations and areas under plasma concentration time curves (Cmax and AUC). Significantly reduced total body clearance (CL) and a longer terminal half-life (t1/2) of approximately 12 h were also observed for the Hb:Hp complex. Distribution and clearance were identical for dimeric and multimeric Hb:Hp complexes. We found no significant effect of a high-dose glucocorticoid treatment protocol on Hb:Hp pharmacokinetic parameter estimates. Conclusion: Collectively, our study supports the dog as a non-rodent animal model to study pharmacological and pharmacokinetic aspects of Hb clearance systems and apply the model to studying Hp as a therapeutic in diseases of hemolysis.
Collapse
Affiliation(s)
- Felicitas S Boretti
- Division of Veterinary Internal Medicine, School of Veterinary Medicine, University of Zurich Zurich, Switzerland
| | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, FDA Center for Biologics Evaluation and Research Bethesda, MD, USA
| | - Andre F Palmer
- Chemical and Biomolecular Engineering, The Ohio State University Columbus, OH, USA
| | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich Hospital, University of Zurich Zurich, Switzerland
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, FDA Center for Biologics Evaluation and Research Bethesda, MD, USA
| |
Collapse
|
42
|
Roth AD, Elmer J, Harris DR, Huntley J, Palmer AF, Nelson T, Johnson JK, Xue R, Lannutti JJ, Viapiano MS. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol Prog 2014; 30:1214-20. [DOI: 10.1002/btpr.1950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 06/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander D. Roth
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Jacob Elmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - David R. Harris
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Joseph Huntley
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Andre F. Palmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Tyler Nelson
- Dept. of Biomedical Engineering; The Ohio State University; Columbus OH 43210
| | - Jed K. Johnson
- Nanofiber Solutions LLC; 1275 Kinnear Road Columbus OH 43212
| | - Ruipeng Xue
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - John J. Lannutti
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - Mariano S. Viapiano
- Dept. of Neurological Surgery; The Ohio State University Wexner Medical Center; Columbus OH 43210
| |
Collapse
|
43
|
Affiliation(s)
- Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210;
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
44
|
Rosa M, Lopes C, Melo EP, Singh SK, Geraldes V, Rodrigues MA. Measuring and Modeling Hemoglobin Aggregation below the Freezing Temperature. J Phys Chem B 2013; 117:8939-46. [DOI: 10.1021/jp4035369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mónica Rosa
- Centro de Química Estrutural,
Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | - Carlos Lopes
- Instituto de Biotecnologia e
Bioengenharia, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139
Faro, Portugal
| | - Eduardo P. Melo
- Instituto de Biotecnologia e
Bioengenharia, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139
Faro, Portugal
| | - Satish K. Singh
- Biotherapeutics
Pharmaceutical
Sciences, Pfizer Inc., Chesterfield, Missouri
63017, United States
| | - Vitor Geraldes
- Centro de Química Estrutural,
Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | - Miguel A. Rodrigues
- Centro de Química Estrutural,
Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| |
Collapse
|
45
|
Cabrales P, Rameez S, Palmer AF. Hemoglobin encapsulated poly(ethylene glycol) surface conjugated vesicles attenuate vasoactivity of cell-free hemoglobin. Curr Drug Discov Technol 2012; 9:224-34. [PMID: 22564169 DOI: 10.2174/157016312802650760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022]
Abstract
UNLABELLED Widespread clinical use of acellular hemoglobin (Hb)-based O2 carriers (HBOCs) has been hampered by their ability to elicit both vasoconstriction and systemic hypertension. This is primarily due to the ability of acellular Hb to extravasate through the blood vessel wall and scavenge endothelial-derived nitric oxide (NO). Encapsulation of Hb inside the aqueous core of liposomes retards the rates of NO dioxygenation and O2 release, which should reduce or eliminate the vasoactivity of Hb. Our aim is to determine the extent of systemic and microvascular vasoactive responses (hypertension, vasoconstriction and hypoperfusion) after infusion of vesicle encapsulated Hbs, in which the encapsulated Hb is in either the deoxygenated or carbon monoxide (CO) state (HbV and COHbV, respectively). To investigate this hypothesis, we used the hamster window chamber model subjected to two successive hypervolemic infusions of HbV and COHbV solutions (each infusion represents 10% of the animal's calculated blood volume) at Hb concentrations of either 7 or 10 g/dL. The hypervolemic infusion model used in this study has all the regulatory mechanisms responsible for predicting the vasoconstrictive responses of HBOCs. The results of this study demonstrate the absence of vasoconstrictive and hypertensive responses upon single and multiple infusions of HbV and COHbV solutions. The HbV and COHbV solutions increased the plasma O2 carrying capacity. However, COHbV delivered low therapeutic levels of CO without inducing any microcirculatory disturbances. SIGNIFICANCE Vesicles containing Hb can be used as a new therapeutic agent in transfusion medicine to treat anemia and revert hypoperfusion.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0412, USA.
| | | | | |
Collapse
|
46
|
Wan JH, Tian PL, Luo WH, Wu BY, Xiong F, Zhou WJ, Wei XC, Xu XM. Rapid determination of human globin chains using reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 901:53-8. [PMID: 22727753 DOI: 10.1016/j.jchromb.2012.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/13/2012] [Accepted: 05/10/2012] [Indexed: 01/06/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work.
Collapse
Affiliation(s)
- Jun-Hui Wan
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Styslinger TJ, Zhang N, Bhatt VS, Pettit N, Palmer AF, Wang PG. Site-selective glycosylation of hemoglobin with variable molecular weight oligosaccharides: potential alternative to PEGylation. J Am Chem Soc 2012; 134:7507-15. [PMID: 22489605 PMCID: PMC3353419 DOI: 10.1021/ja300893t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Poly(ethylene glycol) (PEG) conjugation (i.e., PEGylation) is a commonly used strategy to increase the circulatory half-life of therapeutic proteins and colloids; however, few viable alternatives exist to replicate its functions. Herein, we report a method for the rapid site-selective glycosylation of proteins with variously sized carbohydrates, up to a molecular weight (MW) of 10,000, thus serving as a potential alternative for PEGylation. More importantly, the method developed has two unique features. First, traditional protecting group strategies that typically accompany the modification of the carbohydrate fragments are circumvented, allowing for the facile site-selective glycosylation of a desired protein with variously sized glycans. Second, the methodology employed is not limited by oligosaccharide size; consequently, glycans of MW similar to that of PEG, used in the PEGylation of therapeutic proteins, can be employed. To demonstrate the usefulness of this technology, hemoglobin (Hb) was site-selectively glycosylated with a series of carbohydrates of increasing MW (from 504 to ∼10,000). Hb was selected on the basis of the vast wealth of biochemical and biophysical knowledge present in the literature and because of its use as a precursor in the synthesis/formulation of artificial red blood cell substitutes. Following the successful site-selective glycosylation of Hb, the impact of increasing the glycan MW on Hb's biophysical properties was investigated in vitro.
Collapse
Affiliation(s)
- Thomas J Styslinger
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rameez S, Guzman N, Banerjee U, Fontes J, Paulaitis ME, Palmer AF, Patel RP, Honavar J. Encapsulation of hemoglobin inside liposomes surface conjugated with poly(ethylene glycol) attenuates their reactions with gaseous ligands and regulates nitric oxide dependent vasodilation. Biotechnol Prog 2012; 28:636-45. [DOI: 10.1002/btpr.1532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/06/2012] [Indexed: 01/03/2023]
|
49
|
Baek JH, Zhou Y, Harris DR, Schaer DJ, Palmer AF, Buehler PW. Down selection of polymerized bovine hemoglobins for use as oxygen releasing therapeutics in a guinea pig model. Toxicol Sci 2012; 127:567-81. [PMID: 22416071 DOI: 10.1093/toxsci/kfs109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) are being developed as resuscitative fluids for use in multiple medical applications and in lieu of blood transfusion. However, cardiovascular, central nervous system, and renal adverse events have largely impeded progress. This has prompted a need to evaluate novel down selection approaches for HBOCs prior to in-depth preclinical and clinical safety testing. In the present study, polymerized bovine Hbs (PolybHbs) were prepared with increasing ratios of glutaraldehyde to bovine Hb (10:1, 20:1, 30:1, and 40:1). The optimal PolybHb candidate selection was based on a priori determined in vivo response to include a long circulating PolybHb with no measurable renal exposure, minimal cardiovascular response, limited oxidation to metHb in vitro, or in circulation and absence of acute end organ toxicity. Guinea pigs were dosed via a 50% blood for PolybHb exchange transfusion. Data suggested that the 30:1 preparation exhibited maximum circulatory exposure (AUC(0)(-∞)) with the lowest level of oxidation (plasma metHb formation) and minimal (< 10%) blood pressure elevation. Additionally, the 30:1 preparation was absent renal iron deposition as well as abnormal glomerular/tubular histopathology or serum creatinine elevation. Clearance pathways predominantly followed those consistent with endogenous Hb clearance based pathways. Therefore, data confirmed the ability to select a single PolybHb from a small library of HBOCs based on a priori determined characteristics. Moreover, the approach to down selection described could be applied to enhance the early predictability of human safety for this class of biological therapeutics to optimize for specific indications.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rameez S, Banerjee U, Fontes J, Roth A, Palmer AF. The Reactivity of Polymersome Encapsulated Hemoglobin with Physiologically Important Gaseous Ligands: Oxygen, Carbon Monoxide and Nitric Oxide. Macromolecules 2012; 45:2385-2389. [PMID: 22865934 DOI: 10.1021/ma202739f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two distinct preparations of amphiphilic diblock copolymer vesicles (i.e. polymersomes), composed of (poly(ethylene oxide)-poly(butadiene)) (PEO-PBD), with molecular weights of 1.8 kDa and 10.4 kDa, offering different hydrophobic membrane thicknesses, were used to encapsulate the oxygen (O(2)) storage and transport protein hemoglobin (Hb) for possible application as a red blood cell (RBC) substitute. Key biophysical properties as well as the kinetics of polymersome encapsulated Hb (PEH) interaction with physiologically important gaseous ligands (O(2), carbon monoxide and nitric oxide) were measured as a function of the hydrophobic membrane thickness of the PEH particle. Taken together, the results of this work show that PEHs exhibit biophysical properties and retarded ligand binding/release kinetics (compared to cell-free Hb), which are similar to the behavior of RBCs. Therefore, PEHs have the potential to serve as safe and efficacious RBC substitutes for use in transfusion medicine.
Collapse
Affiliation(s)
- Shahid Rameez
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 425 Koffolt Laboratories, 140 West 19 Avenue, Columbus, OH 43210
| | | | | | | | | |
Collapse
|