1
|
Wang X, Yang Q, Haringa C, Wang Z, Chu J, Zhuang Y, Wang G. An industrial perspective on metabolic responses of Penicillium chrysogenum to periodic dissolved oxygen feast-famine cycles in a scale-down system. Biotechnol Bioeng 2024; 121:3076-3098. [PMID: 39382054 DOI: 10.1002/bit.28782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-down setup based on dynamic feast/famine regime (150 s) that leads to repetitive cycles with rapid changes in DO availability in glucose-limited chemostat cultures of Penicillium chrysogenum. Such DO feast/famine regime induced a stable and repetitive pattern with a reproducible metabolic response in time, and the dynamic response of intracellular metabolites featured specific differences in terms of both coverage and magnitude in comparison to other dynamic conditions, for example, substrate feast/famine cycles. Remarkably, intracellular sugar polyols were considerably increased as the hallmark metabolites along with a dynamic and higher redox state (NADH/NAD+) of the cytosol. Despite the increased availability of NADPH for penicillin production under the oscillatory DO conditions, this positive effect may be counteracted by the decreased ATP supply. Moreover, it is interesting to note that not only the penicillin productivity was reduced under such oscillating DO conditions, but also that of the unrecyclable byproduct ortho-hydroxyphenyl acetic acid and degeneration of penicillin productivity. Furthermore, dynamic flux profiles showed the most pronounced variations in central carbon metabolism, amino acid (AA) metabolism, energy metabolism and fatty acid metabolism upon the DO oscillation. Taken together, the metabolic responses of P. chrysogenum to DO gradients reported here are important for elucidating metabolic regulation mechanisms, improving bioreactor design and scale-up procedures as well as for constructing robust cell strains to cope with heterogenous industrial culture conditions.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Cees Haringa
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Haringa C, Tang W, Noorman HJ. Stochastic parcel tracking in an Euler-Lagrange compartment model for fast simulation of fermentation processes. Biotechnol Bioeng 2022; 119:1849-1860. [PMID: 35352339 PMCID: PMC9321588 DOI: 10.1002/bit.28094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes.
Collapse
Affiliation(s)
- Cees Haringa
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Wenjun Tang
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
- Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of TechnologyRoyal DSMDelftThe Netherlands
| | - Henk J. Noorman
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
- Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of TechnologyRoyal DSMDelftThe Netherlands
| |
Collapse
|
3
|
Yang Q, Lin W, Xu J, Guo N, Zhao J, Wang G, Wang Y, Chu J, Wang G. Changes in Oxygen Availability during Glucose-Limited Chemostat Cultivations of Penicillium chrysogenum Lead to Rapid Metabolite, Flux and Productivity Responses. Metabolites 2022; 12:metabo12010045. [PMID: 35050169 PMCID: PMC8780904 DOI: 10.3390/metabo12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.
Collapse
|
4
|
Impact of Altered Trehalose Metabolism on Physiological Response of Penicillium chrysogenum Chemostat Cultures during Industrially Relevant Rapid Feast/Famine Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Due to insufficient mass transfer and mixing issues, cells in the industrial-scale bioreactor are often forced to experience glucose feast/famine cycles, mostly resulting in reduced commercial metrics (titer, yield and productivity). Trehalose cycling has been confirmed as a double-edged sword in the Penicillium chrysogenum strain, which facilitates the maintenance of a metabolically balanced state, but it consumes extra amounts of the ATP responsible for the repeated breakdown and formation of trehalose molecules in response to extracellular glucose perturbations. This loss of ATP would be in competition with the high ATP-demanding penicillin biosynthesis. In this work, the role of trehalose metabolism was further explored under industrially relevant conditions by cultivating a high-yielding Penicillium chrysogenum strain, and the derived trehalose-null strains in the glucose-limited chemostat system where the glucose feast/famine condition was imposed. This dynamic feast/famine regime with a block-wise feed/no feed regime (36 s on, 324 s off) allows one to generate repetitive cycles of moderate changes in glucose availability. The results obtained using quantitative metabolomics and stoichiometric analysis revealed that the intact trehalose metabolism is vitally important for maintaining penicillin production capacity in the Penicillium chrysogenum strain under both steady state and dynamic conditions. Additionally, cells lacking such a key metabolic regulator would become more sensitive to industrially relevant conditions, and are more able to sustain metabolic rearrangements, which manifests in the shrinkage of the central metabolite pool size and the formation of ATP-consuming futile cycles.
Collapse
|
5
|
The Combination of Carbon Source and the Addition of Phenylacetic Acid (PAA) to Growth Medium Penicillium chrysogenum to Enhance of Penicillin (Pen G) Production. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.9.312-318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nutrition factor governs the growth and production of Penicillin G (Pen G) by Penicillium chrysogenum in a broth medium. Proper nutrition can improve Pen G antibiotic production. In this research, the optimal condition for Pen G production from P. chrysogenum in a standard culture medium and various carbon sources medium (glucose, lactose, maltose, and sucrose) were done for ten days. Phenylacetic Acid (PAA) precursor at 0.0 – 0.6 gL-1 (increment 0.1) was used to improve Pen G production. The Pen G was detected by HPLC, compared with the standard (Penicillin G Sodium Salt). The results showed that the PDB standard medium and lactose medium (150 rpm, at 30°C) produced 0.425 gL-1 and 0.107 gL-1 Pen G. Addition of 0.6 gL-1 PAA improved the Pen G production up to 0.045 gL-1 in the PDB medium, become the final concentration of 0.470 gL-1 and 2.460 gL-1 in the lactose medium, become the final concentration of 2.565 gL-1. The antibiotic’s activity against the pathogenic bacteria, i.e., B. subtilis, S. aureus, and S. typhi employing the disk diffusion method, has been done. The TLC method’s detection of the potential Pen G spots was conducted with ethyl acetate: distilled water: acetic acid (60:20:20) as the mobile phase. The Pen G extracts could inhibit the growth of all tested bacteria in Rf 0.65. This study informs the proper combination of carbon source and precursor effects and increases the bioproduction of Pen G from P. chrysogenum.
Collapse
|
6
|
Martín JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol 2020; 7:6. [PMID: 32351700 PMCID: PMC7183595 DOI: 10.1186/s40694-020-00096-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
7
|
Wang G, Wang X, Wang T, Gulik W, Noorman HJ, Zhuang Y, Chu J, Zhang S. Comparative Fluxome and Metabolome Analysis of Formate as an Auxiliary Substrate for Penicillin Production in Glucose‐Limited Cultivation of
Penicillium chrysogenum. Biotechnol J 2019; 14:e1900009. [DOI: 10.1002/biot.201900009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Xinxin Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Tong Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Walter Gulik
- Cell Systems Engineering, Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Henk J. Noorman
- DSM Biotechnology Center Delft The Netherlands
- Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
8
|
Wang G, Zhao J, Wang X, Wang T, Zhuang Y, Chu J, Zhang S, Noorman HJ. Quantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Oelschlägel M, Zimmerling J, Tischler D. A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Front Microbiol 2018; 9:490. [PMID: 29623070 PMCID: PMC5874493 DOI: 10.3389/fmicb.2018.00490] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for the styrene degradation among microorganisms. It comprises the following enzymes: styrene monooxygenase (SMO; NADH-consuming and FAD-dependent, two-component system), styrene oxide isomerase (SOI; cofactor independent, membrane-bound protein) and phenylacetaldehyde dehydrogenase (PAD; NAD+-consuming) and allows an intrinsic cofactor regeneration. This specific way harbors a high potential for biotechnological use. Based on the enzymatic steps involved in this degradation route, important reactions can be realized from a large number of substrates which gain access to different interesting precursors for further applications. Furthermore, stereochemical transformations are possible, offering chiral products at high enantiomeric excess. This review provides an actual view on the microbiological styrene degradation followed by a detailed discussion on the enzymes of the side-chain oxygenation. Furthermore, the potential of the single enzyme reactions as well as the respective multi-step syntheses using the complete enzyme cascade are discussed in order to gain styrene oxides, phenylacetaldehydes, or phenylacetic acids (e.g., ibuprofen). Altered routes combining these putative biocatalysts with other enzymes are additionally described. Thus, the substrates spectrum can be enhanced and additional products as phenylethanols or phenylethylamines are reachable. Finally, additional enzymes with similar activities toward styrene and its metabolic intermediates are shown in order to modify the cascade described above or to use these enzyme independently for biotechnological application.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Juliane Zimmerling
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Tang W, Deshmukh AT, Haringa C, Wang G, van Gulik W, van Winden W, Reuss M, Heijnen JJ, Xia J, Chu J, Noorman HJ. A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation byPenicillium chrysogenum. Biotechnol Bioeng 2017; 114:1733-1743. [DOI: 10.1002/bit.26294] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Wenjun Tang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | | | - Cees Haringa
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | - Walter van Gulik
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | - Matthias Reuss
- Institute of Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Joseph J. Heijnen
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | | |
Collapse
|
11
|
Zimmerling J, Tischler D, Großmann C, Schlömann M, Oelschlägel M. Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes. Appl Biochem Biotechnol 2017; 182:1095-1107. [PMID: 28062952 DOI: 10.1007/s12010-016-2384-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
Abstract
Herein, different dehydrogenases (DH) were characterized by applying a novel two-step enzyme assay. We focused on the NAD(P)+-dependent phenylacetaldehyde dehydrogenases because they produce industrially relevant phenylacetic acids, but they are not well studied due to limited substrate availability. The first assay step comprises a styrene oxide isomerase (440 U mg-1protein) which allows the production of pure phenylacetaldehydes (>70 mmol L-1) from commercially available styrene oxides. Thereafter, a DH of interest can be added to convert phenylacetaldehydes in a broad concentration range (0.05 to 1.25 mmol L-1). DH activity can be determined spectrophotometrically by following cofactor reduction or alternatively by RP-HPLC. This assay allowed the comparison of four aldehyde dehydrogenases and even of an alcohol dehydrogenase with respect to the production of phenylacetic acids (up to 8.4 U mg-1protein). FeaB derived from Escherichia coli K-12 was characterized in more detail, and for the first time, substituted phenylacetaldehydes had been converted. With this enzyme assay, characterization of dehydrogenases is possible although the substrates are not commercially available in sufficient quality but enzymatically producible. The advantages of this assay in comparison to the former one are discussed.
Collapse
Affiliation(s)
- Juliane Zimmerling
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Carolin Großmann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| |
Collapse
|
12
|
Haringa C, Noorman HJ, Mudde RF. Lagrangian modeling of hydrodynamic–kinetic interactions in (bio)chemical reactors: Practical implementation and setup guidelines. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Current state and challenges for dynamic metabolic modeling. Curr Opin Microbiol 2016; 33:97-104. [PMID: 27472025 DOI: 10.1016/j.mib.2016.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 01/06/2023]
Abstract
While the stoichiometry of metabolism is probably the best studied cellular level, the dynamics in metabolism can still not be well described, predicted and, thus, engineered. Unknowns in the metabolic flux behavior arise from kinetic interactions, especially allosteric control mechanisms. While the stoichiometry of enzymes is preserved in vitro, their activity and kinetic behavior differs from the in vivo situation. Next to this challenge, it is infeasible to test the interaction of each enzyme with each intracellular metabolite in vitro exhaustively. As a consequence, the whole interacting metabolome has to be studied in vivo to identify the relevant enzymes properties. In this review we discuss current approaches for in vivo perturbation experiments, that is, stimulus response experiments using different setups and quantitative analytical approaches, including dynamic carbon tracing. Next to reliable and informative data, advanced modeling approaches and computational tools are required to identify kinetic mechanisms and their parameters.
Collapse
|
14
|
Shah MV, van Mastrigt O, Heijnen JJ, van Gulik WM. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture. Yeast 2016; 33:145-61. [PMID: 26683700 DOI: 10.1002/yea.3148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.
Collapse
Affiliation(s)
- Mihir V Shah
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | - Joseph J Heijnen
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, The Netherlands
| |
Collapse
|
15
|
In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments. Metab Eng 2015; 32:155-173. [DOI: 10.1016/j.ymben.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
16
|
Abstract
Itaconic acid is an important building block for the chemical industry. Currently, Aspergillus terreus is the main organism used for itaconic acid production. Due to the enormous citric acid production capacity of Aspergillus niger, this host is investigated as a potential itaconic acid production host. Several strategies have been tried so far: fermentation optimization, expression of cis-aconitate decarboxylase (cadA) alone and in combination with aconitase targeted to the same compartment, chassis optimization, and the heterologous expression of two transporters flanking the cadA gene. We showed that the heterologous expression of these two transporters were key to improving itaconic acid production in an A. niger strain that was unable to produce oxalic acid and gluconic acid. The expression of transporters has increased the production levels of other industrially relevant processes as well, such as β-lactam antibiotics and bioethanol. Thus far, the role of transporters in production process optimization is a bit overlooked.
Collapse
Affiliation(s)
- Laura van der Straat
- a Microbial Systems and Synthetic Biology; Laboratory of Systems and Synthetic Biology; Wageningen University; Wageningen, the Netherlands
| | | |
Collapse
|
17
|
Oelschlägel M, Kaschabek SR, Zimmerling J, Schlömann M, Tischler D. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. ACTA ACUST UNITED AC 2015. [PMID: 28626693 PMCID: PMC5466254 DOI: 10.1016/j.btre.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Styrene degradation via phenylacetic acid was shown for the strains described. Co-metabolic transformation of substituted styrenes was shown. Formation of several phenylacetic acids, e.g. ibuprofen, was reported. α-Methylated substrates were transformed enantioselectively with an ee of up to 40%. Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids.
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Stefan R Kaschabek
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Juliane Zimmerling
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| |
Collapse
|
18
|
Wang G, Chu J, Noorman H, Xia J, Tang W, Zhuang Y, Zhang S. Prelude to rational scale-up of penicillin production: a scale-down study. Appl Microbiol Biotechnol 2014; 98:2359-69. [DOI: 10.1007/s00253-013-5497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 12/16/2022]
|
19
|
The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genet Biol 2012; 49:915-21. [DOI: 10.1016/j.fgb.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
|
20
|
Amplification of an MFS Transporter Encoding Gene penT Significantly Stimulates Penicillin Production and Enhances the Sensitivity of Penicillium chrysogenum to Phenylacetic Acid. J Genet Genomics 2012. [DOI: 10.1016/j.jgg.2012.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|