1
|
Sreenivasan S, Rathore AS. Taurine, a Naturally Occurring Amino Acid, as a Physical Stability Enhancer of Different Monoclonal Antibodies. AAPS J 2024; 26:25. [PMID: 38355847 DOI: 10.1208/s12248-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
Degradation of therapeutic monoclonal antibodies (mAbs) is a major concern as it affects efficacy, shelf-life, and safety of the product. Taurine, a naturally occurring amino acid, is investigated in this study as a potential mAb stabilizer with an extensive analytical characterization to monitor product degradation. Forced degradation of trastuzumab biosimilar (mAb1)-containing samples by thermal stress for 30 min resulted in high-molecular-weight species by more than 65% in sample without taurine compared to the sample with taurine. Samples containing mAb1 without taurine also resulted in higher Z-average diameter, altered protein structure, higher hydrophobicity, and lower melting temperature compared to samples with taurine. The stabilizing effect of taurine was retained at different mAb and taurine concentrations, time, temperatures, and buffers, and at the presence of polysorbate 80 (PS80). Even the lowest taurine concentration (10 mM) considered in this study, which is in the range of taurine levels in amino acid injections, resulted in enhanced mAb stability. Taurine-containing samples resulted in 90% less hemolysis than samples containing PS80. Additionally, mAb in the presence of taurine showed enhanced stability upon subjecting to stress with light of 365 nm wavelength, combination of light and H2O2, and combination of Fe2+ and H2O2, as samples containing mAb without taurine resulted in increased degradation products by more than 50% compared to samples with taurine upon subjecting to these stresses for 60 min. In conclusion, the presence of taurine enhanced physical stability of mAb by preventing aggregate formation, and the industry can consider it as a new mAb stabilizer.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Bello-Perez M, Esparza I, De la Encina A, Bartolome T, Molina T, Sanjuan E, Falco A, Enjuanes L, Sola I, Usera F. Pulsed-Xenon Ultraviolet Light Highly Inactivates Human Coronaviruses on Solid Surfaces, Particularly SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113780. [PMID: 36360660 PMCID: PMC9653743 DOI: 10.3390/ijerph192113780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
In the context of ongoing and future pandemics, non-pharmaceutical interventions are critical in reducing viral infections and the emergence of new antigenic variants while the population reaches immunity to limit viral transmission. This study provides information on efficient and fast methods of disinfecting surfaces contaminated with different human coronaviruses (CoVs) in healthcare settings. The ability to disinfect three different human coronaviruses (HCoV-229E, MERS-CoV, and SARS-CoV-2) on dried surfaces with light was determined for a fully characterized pulsed-xenon ultraviolet (PX-UV) source. Thereafter, the effectiveness of this treatment to inactivate SARS-CoV-2 was compared to that of conventional low-pressure mercury UVC lamps by using equivalent irradiances of UVC wavelengths. Under the experimental conditions of this research, PX-UV light completely inactivated the CoVs tested on solid surfaces since the infectivity of the three CoVs was reduced up to 4 orders of magnitude by PX-UV irradiation, with a cumulated dose of as much as 21.162 mJ/cm2 when considering all UV wavelengths (5.402 mJ/cm2 of just UVC light). Furthermore, continuous irradiation with UVC light was less efficient in inactivating SARS-CoV-2 than treatment with PX-UV light. Therefore, PX-UV light postulates as a promising decontamination measure to tackle the propagation of future outbreaks of CoVs.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Iris Esparza
- Biosafety Service, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Arancha De la Encina
- Biosafety Service, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Teresa Bartolome
- Biosafety Service, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Teresa Molina
- CandelTEC S.L. Pol. Industrial L’Horta Vella, 8, 6, 46117 Betera, Spain
| | - Elena Sanjuan
- CandelTEC S.L. Pol. Industrial L’Horta Vella, 8, 6, 46117 Betera, Spain
| | - Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Fernando Usera
- Biosafety Service, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Kozawa D, Cho SY, Gong X, Nguyen FT, Jin X, Lee MA, Lee H, Zeng A, Xue G, Schacherl J, Gibson S, Vega L, Strano MS. A Fiber Optic Interface Coupled to Nanosensors: Applications to Protein Aggregation and Organic Molecule Quantification. ACS NANO 2020; 14:10141-10152. [PMID: 32667777 DOI: 10.1021/acsnano.0c03417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent nanosensors hold promise to address analytical challenges in the biopharmaceutical industry. The monitoring of therapeutic protein critical quality attributes such as aggregation is a long-standing challenge requiring low detection limits and multiplexing of different product parameters. However, general approaches for interfacing nanosensors to the biopharmaceutical process remain minimally explored to date. Herein, we design and fabricate a integrated fiber optic nanosensor element, measuring sensitivity, response time, and stability for applications to the rapid process monitoring. The fiber optic-nanosensor interface, or optode, consists of label-free nIR fluorescent single-walled carbon nanotube transducers embedded within a protective yet porous hydrogel attached to the end of the fiber waveguide. The optode platform is shown to be capable of differentiating the aggregation status of human immunoglobulin G, reporting the relative fraction of monomers and dimer aggregates with sizes 5.6 and 9.6 nm, respectively, in under 5 min of analysis time. We introduce a lab-on-fiber design with potential for at-line monitoring with integration of 3D-printed miniaturized sensor tips having high mechanical flexibility. A parallel measurement of fluctuations in laser excitation allows for intensity normalization and significantly lower noise level (3.7 times improved) when using lower quality lasers, improving the cost effectiveness of the platform. As an application, we demonstrate the capability of the fully integrated lab-on-fiber system to rapidly monitor various bioanalytes including serotonin, norepinephrine, adrenaline, and hydrogen peroxide, in addition to proteins and their aggregation states. These results in total constitute an effective form factor for nanosensor-based transducers for applications in industrial process monitoring.
Collapse
Affiliation(s)
- Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Soo-Yeon Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heejin Lee
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Alicia Zeng
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gang Xue
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeff Schacherl
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Scott Gibson
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leonela Vega
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Miyahara Y, Shintani K, Hayashihara-Kakuhou K, Zukawa T, Morita Y, Nakazawa T, Yoshida T, Ohkubo T, Uchiyama S. Effect of UVC Irradiation on the Oxidation of Histidine in Monoclonal Antibodies. Sci Rep 2020; 10:6333. [PMID: 32286391 PMCID: PMC7156388 DOI: 10.1038/s41598-020-63078-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 01/31/2023] Open
Abstract
We oxidized histidine residues in monoclonal antibody drugs of immunoglobulin gamma 1 (IgG1) using ultraviolet C irradiation (UVC: 200-280 nm), which is known to be potent for sterilization or disinfection. Among the reaction products, we identified asparagine and aspartic acid by mass spectrometry. In the photo-induced oxidation of histidine in angiotensin II, 18O atoms from H218O in the solvent were incorporated only into aspartic acid but not into asparagine. This suggests that UVC irradiation generates singlet oxygen and induces [2 + 2] cycloaddition to form a dioxetane involving the imidazole Cγ - Cδ2 bond of histidine, followed by ring-opening in the manner of further photo-induced retro [2 + 2] cycloaddition. This yields an equilibrium mixture of two keto-imines, which can be the precursors to aspartic acid and asparagine. The photo-oxidation appears to occur preferentially for histidine residues with lower pKa values in IgG1. We thus conclude that the damage due to UVC photo-oxidation of histidine residues can be avoided in acidic conditions where the imidazole ring is protonated.
Collapse
Affiliation(s)
- Yuya Miyahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Koya Shintani
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | | | | | | | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Salem DP, Gong X, Lee H, Zeng A, Xue G, Schacherl J, Gibson S, Strano MS. Characterization of Protein Aggregation Using Hydrogel-Encapsulated nIR Fluorescent Nanoparticle Sensors. ACS Sens 2020; 5:327-337. [PMID: 31989811 DOI: 10.1021/acssensors.9b01586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The monitoring of biopharmaceutical critical quality attributes in-process, at both the process development and manufacturing stages, is necessary for the implementation of process analytical technology and quality-by-design principles. Among these attributes, it is important to monitor and control protein aggregation during the manufacturing of biological therapeutics to prevent adverse immunogenic responses and minimize negative impacts on drug deliverability. In this work, we explore hydrogel-encapsulated, label-free fluorescent nanosensors for the characterization of protein aggregation. A mathematical model is used to describe the diffusion and binding of a series of stressed pharmaceutical samples to such sensors, describing their dynamic response. We use mathematical modeling to map the influence of hydrogel properties on the separation performance, given the composition of UV-stressed IgG1 samples. Using this modified model, the compositions of light-stressed IgG1 samples were fit to experimental data and correlated with size-exclusion chromatography data. The results demonstrate the ability to detect the presence of high-molecular-weight protein species at a concentration as low as 1%. This work represents a significant step toward the development and deployment of rapid process analytical technologies for biopharmaceutical characterization.
Collapse
Affiliation(s)
- Daniel P. Salem
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heejin Lee
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Alicia Zeng
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gang Xue
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeff Schacherl
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Scott Gibson
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Schöneich C. Thiyl Radical Reactions in the Chemical Degradation of Pharmaceutical Proteins. Molecules 2019; 24:E4357. [PMID: 31795282 PMCID: PMC6930596 DOI: 10.3390/molecules24234357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Free radical pathways play a major role in the degradation of protein pharmaceuticals. Inspired by biochemical reactions carried out by thiyl radicals in various enzymatic processes, this review focuses on the role of thiyl radicals in pharmaceutical protein degradation through hydrogen atom transfer, electron transfer, and addition reactions. These processes can lead to the epimerization of amino acids, as well as the formation of various cleavage products and cross-links. Examples are presented for human insulin, human and mouse growth hormone, and monoclonal antibodies.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
8
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
9
|
Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int J Pharm 2018; 547:438-449. [DOI: 10.1016/j.ijpharm.2018.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022]
|
10
|
Photodegradation Pathways of Protein Disulfides: Human Growth Hormone. Pharm Res 2017; 34:2756-2778. [DOI: 10.1007/s11095-017-2256-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
|
11
|
Hazeltine LB, Knueven KM, Zhang Y, Lian Z, Olson DJ, Ouyang A. Chemically defined media modifications to lower tryptophan oxidation of biopharmaceuticals. Biotechnol Prog 2015; 32:178-88. [PMID: 26560440 DOI: 10.1002/btpr.2195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/16/2015] [Indexed: 12/16/2022]
Abstract
Oxidation of biopharmaceuticals is a major product quality issue with potential impacts on activity and immunogenicity. At Eli Lilly and Company, high tryptophan oxidation was observed for two biopharmaceuticals in development produced in Chinese hamster ovary cells. A switch from historical hydrolysate-containing media to chemically defined media with a reformulated basal powder was thought to be responsible, so mitigation efforts focused on media modification. Shake flask studies identified that increasing tryptophan, copper, and manganese and decreasing cysteine concentrations were individual approaches to lower tryptophan oxidation. When amino acid and metal changes were combined, the modified formulation had a synergistic impact that led to substantially less tryptophan oxidation for both biopharmaceuticals. Similar results were achieved in shake flasks and benchtop bioreactors, demonstrating the potential to implement these modifications at manufacturing scale. The modified formulation did not negatively impact cell growth and viability, product titer, purity, charge variants, or glycan profile. A potential mechanism of action is presented for each amino acid or metal factor based on its role in oxidation chemistry. This work served not only to mitigate the tryptophan oxidation issue in two Lilly biopharmaceuticals in development, but also to increase our knowledge and appreciation for the impact of media components on product quality.
Collapse
Affiliation(s)
- Laurie B Hazeltine
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Kristine M Knueven
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Yan Zhang
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Zhirui Lian
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Donald J Olson
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Anli Ouyang
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| |
Collapse
|
12
|
End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 2015; 213:13-9. [DOI: 10.1016/j.jbiotec.2015.06.393] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023]
|
13
|
UV photodegradation of murine growth hormone: chemical analysis and immunogenicity consequences. Eur J Pharm Biopharm 2014; 87:395-402. [PMID: 24758742 DOI: 10.1016/j.ejpb.2014.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/14/2023]
Abstract
During manufacturing, therapeutic proteins may be exposed to ultraviolet (UV) radiation. Such exposure is of concern because UV radiation may cause photooxidative damage to proteins, which in turn could lead to physical changes such as aggregation and enhanced immunogenicity. We exposed murine growth hormone (mGH) to controlled doses of UV radiation, and examined the resulting chemical, physical and immunogenic changes in the protein. mGH chemical structure was analyzed by mass spectrometry after UV irradiation. Photooxidation products detected by mass spectrometry included methionine sulfoxide formed at Met[127] and Met[149] residues, and, tentatively assigned by MS/MS analysis, ether cross-links between original Ser[78] and Cys[188], and Cys[206] and Ser[213], and a thioether cross-link between Cys[17] and Cys[78] residues, transformation of Cys[189] into Ala, and various hydrolytic fragments. Physical damage to UV-irradiated mGH was monitored by infrared spectrometry, chromatographic analyses, and particle counting by micro-flow imaging. UV radiation caused mGH to aggregate, forming insoluble microparticles containing mGH with non-native secondary structure. When administered subcutaneously to Balb/c or Nude Balb/c mice, UV-irradiated mGH provoked antibodies that cross-reacted with unmodified mGH in a fashion consistent with a T-cell dependent immune response. In wildtype Balb/c mice, titers for anti-mGH IgG1 antibodies increased with increasing UV radiation doses.
Collapse
|
14
|
Steinmann D, Ji JA, Wang YJ, Schöneich C. Photodegradation of human growth hormone: a novel backbone cleavage between Glu-88 and Pro-89. Mol Pharm 2013; 10:2693-706. [PMID: 23721578 DOI: 10.1021/mp400128j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The exposure of protein pharmaceuticals to light can cause loss of potency, oxidation, structural changes and aggregation. To elucidate the chemical pathways of photodegradation, we irradiated human growth hormone (hGH) at λ = 254 nm, λ ≈ 265-340 nm, and λ ≈ 295-340 nm (using the spectral cutoff of borosilicate glass) and analyzed the products by mass spectrometry. By means of LC-MS/MS analysis, we observed an unusual peptide backbone cleavage between Glu-88 and Pro-89. The crystal structure of hGH indicates that these residues are in proximity to Trp-86, which likely mediates this backbone cleavage. The two cleavage fragments observed by MS/MS analysis indicate the loss of CO from the amide bond and replacement of the Glu-C(═ O)Pro bond with a Glu-H bond, accompanied by double bond formation on proline. The reaction is oxygen-independent and likely involves hydrogen transfer to the Cα of Glu-88. To probe the influence of the protein fold, we irradiated hGH in its unfolded state, in 1:1 (v/v) acetonitrile/water, and also the isolated tryptic peptide Ile-78-Arg-90, which contains the Glu-88-Pro-89 sequence. In both cases, the cleavage between Glu-88 and Pro-89 was largely suppressed, while other cleavage pathways became dominant, notably between Gln-84 and Ser-85, as well as Ser-85 and Trp-86.
Collapse
Affiliation(s)
- Daniel Steinmann
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | | | | | | |
Collapse
|
15
|
Zhou S, Mozziconacci O, Kerwin BA, Schöneich C. The photolysis of disulfide bonds in IgG1 and IgG2 leads to selective intramolecular hydrogen transfer reactions of cysteine Thiyl radicals, probed by covalent H/D exchange and RPLC-MS/MS analysis. Pharm Res 2013; 30:1291-9. [PMID: 23307417 DOI: 10.1007/s11095-012-0968-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE The evaluation of photo-instability of biotherapeutic products is mandated by regulatory agencies. Photo-irradiation can induce oxidative modifications in proteins, which may lead to undesired biological and therapeutic consequences. Among the modifications, epimerization of amino acid residues can occur upon photo-irradiation of IgGs. METHODS We show here, that UV irradiation (λ = 253.7 nm) of IgG1 and IgG2 leads to the formation of intermediary carbon-centered radicals, validated by covalent incorporation of deuterium into the protein primary sequence. RESULTS By MS/MS analysis we identified the sites of deuterium incorporation, such as the sequence QD [303:304, HC], present in the peptide of VVSVLTVVHQDWLNGK [294:309, HC] in both IgG1 and IgG2, and V [111, LC] and K [116, LC], present in the peptide VTVLGQPK [109:116, LC] in IgG2. Both peptides are in the proximity of intrachain disulfide bonds. CONCLUSIONS The exposure of IgG1 and IgG2 to UV-light (λ = 253.7 nm) generates specific carbon-centered radicals. The latter were evidenced by a covalent H-D exchange reaction that likely occurred through a hydrogen atom transfer reaction between cysteine thiyl radical and C-H bond.
Collapse
Affiliation(s)
- Shuxia Zhou
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
16
|
Mozziconacci O, Haywood J, Gorman EM, Munson E, Schöneich C. Photolysis of recombinant human insulin in the solid state: formation of a dithiohemiacetal product at the C-terminal disulfide bond. Pharm Res 2011; 29:121-33. [PMID: 21748537 DOI: 10.1007/s11095-011-0519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Exposure of protein pharmaceuticals to light can result in chemical and physical modifications, potentially leading to loss of potency, aggregation, and/or immunogenicity. To correlate these potential consequences with molecular changes, the nature of photoproducts and their mechanisms of formation must be characterized. The present study focuses on the photochemical degradation of insulin in the solid state. METHODS Solid insulin was characterized by solid-state NMR, polarized optical microscopy and scanning electron microscopy; various insulin preparations were exposed to UV light prior to product analysis by mass spectrometry. RESULTS UV-exposure of solid human insulin results in photodissociation of the C-terminal intrachain disulfide bond, leading to formation of a CysS(•) thiyl radical pair which ultimately disproportionates into thiol and thioaldehyde species. The high reactivity of the thioaldehyde and proximity to the thiol allow the formation of a dithiohemiacetal structure. Dithiohemiacetal is formed during the UV-exposure of both crystalline and amorphous insulin. CONCLUSIONS Dithiohemiacetals represent novel structures generated through the photochemical modification of disulfide bonds. This is the first time that such structure is identified during the photolysis of a protein in the solid state.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
17
|
Bak J, Jørgensen TM, Helfmann J, Gravemann U, Vorontsova I. Potential In Vivo UVC Disinfection of Catheter Lumens: Estimation of the Doses Received by the Blood Flow Outside the Catheter Tip Hole. Photochem Photobiol 2011; 87:350-6. [DOI: 10.1111/j.1751-1097.2011.00887.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Mozziconacci O, Kerwin BA, Schöneich C. Exposure of a Monoclonal Antibody, IgG1, to UV-Light Leads to Protein Dithiohemiacetal and Thioether Cross-Links: A Role for Thiyl Radicals? Chem Res Toxicol 2010; 23:1310-2. [DOI: 10.1021/tx100193b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047, and Department of Analytical and Formulation Science, Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119
| | - Bruce A. Kerwin
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047, and Department of Analytical and Formulation Science, Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047, and Department of Analytical and Formulation Science, Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119
| |
Collapse
|
19
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|